温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
湖南岳阳
word
解析
2020年岳阳市初中学业水平考试试卷数学
温馨提示:
1.本试卷共三大题,24小题,考试时量90分钟;
2.本试卷分为试题卷和答题卡两部分,所有答案都必须填涂或填写在答题卡上规定的答题区域内;
3.考试结束后,考生不得将试题卷、答题卡、草稿纸带出考场.
一、选择题(本大题共8小题,在每道小题给出的四个选项中,选出符合要求的一项)
1.-2020的相反数是( )
A. 2020 B. -2020 C. D. -
【答案】A
【解析】
【分析】
根据相反数直接得出即可.
【详解】-2020的相反数是2020,
故选A.
【点睛】本题是对相反数的考查,熟练掌握相反数知识是解决本题的关键.
2.2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据科学记数法的定义即可得.
【详解】科学记数法:将一个数表示成的形式,其中,n为整数,这种记数的方法叫做科学记数法
则
故选:D.
【点睛】本题考查了科学记数法的定义,熟记定义是解题关键.
3.如图,由4个相同正方体组成的几何体,它的左视图是( )
A. B.
C. D.
【答案】A
【解析】
【分析】
根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.
【详解】观察图形,从左边看得到两个叠在一起的正方形,如下图所示:
故选A.
【点睛】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.
4.下列运算结果正确的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据幂的乘方、同底数幂的乘法和除法及合并同类项的计算法则分别计算即可得解.
【详解】解:A、,故错误;
B、,故错误;
C、,故正确;
D、故错误;
故选:C
【点睛】本题考查了幂的乘方、同底数幂的乘法和除法及合并同类项,是基础题,关键是掌握整式的运算法则.
5.如图,,,,则的度数是( )
A. B. C. D.
【答案】D
【解析】
【分析】
由平行线的判定和性质,即可求出答案.
【详解】解:∵,,
∴,
∴,
∵,
∴;
故选:D.
【点睛】本题考查了平行线的判定和性质,解题的关键是掌握两直线平行,同旁内角互补.
6.今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是( )
A. 36.3,36.5 B. 36.5,36.5 C. 36.5,36.3 D. 36.3,36.7
【答案】B
【解析】
【分析】
根据众数、中位数的概念求出众数和中位数即可判断.
【详解】解:将这7名学生的体温按从小到大的顺序排列如下:
36.3,36.3,36.5,36.5, 36.5,36.7,36.8
则中位数就是第4个数:36.5;
出现次数最多的数是36.5,则众数为:36.5;
故选:B
【点睛】本题考查的是众数、中位数,掌握它们的概念和计算方法是解题的关键.
7.下列命题是真命题的是( )
A. 一个角的补角一定大于这个角 B. 平行于同一条直线的两条直线平行
C. 等边三角形是中心对称图形 D. 旋转改变图形的形状和大小
【答案】B
【解析】
【分析】
由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.
【详解】解:A、一个角的补角不一定大于这个角,故A错误;
B、平行于同一条直线的两条直线平行,故B正确;
C、等边三角形是轴对称图形,不是中心对称图形,故C错误;
D、旋转不改变图形的形状和大小,故D错误;
故选:B.
【点睛】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断.
8.对于一个函数,自变量取时,函数值等于0,则称为这个函数的零点.若关于的二次函数有两个不相等的零点,关于的方程有两个不相等的非零实数根,则下列关系式一定正确的是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据根与系数的关系可以求出,的值,用作差法比较的大小关系,的大小关系,根据可求出m的取值范围,结合的大小关系,的大小关系从而得出选项.
【详解】解:∵是的两个不相等的零点
即是的两个不相等的实数根
∴
∵
解得
∵方程有两个不相等的非零实数根
∴
∵
解得
∴<0
∴
∵,
∴
∴
∴
而由题意知
解得
当时,,;
当时,,;
当m=3时,无意义;
当时,,
∴取值范围不确定,
故选B.
【点睛】本题考查了一元二次方程的根与系数的关系,判别式与根的关系及一元二次方程与二次函数的关系.解题的关键是熟记根与系数的关系,对于(a≠0)的两根为,则.
二、填空题(本大题共8个小题)
9.因式分解:_________
【答案】
【解析】
【分析】
a2-9可以写成a2-32,符合平方差公式的特点,利用平方差公式分解即可.
【详解】解:a2-9=(a+3)(a-3).
点评:本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.
10.函数中,自变量的取值范围是_____.
【答案】
【解析】
【分析】
根据被开方式是非负数列式求解即可.
【详解】依题意,得,
解得:,
故答案为.
【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
11.不等式组的解集是_______________.
【答案】
【解析】
【分析】
先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.
【详解】
解不等式①得:
解不等式②得:
则不等式组的解集为
故答案为:.
【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.
12.如图:在中,是斜边上的中线,若,则_________.
【答案】
【解析】
【分析】
先根据直角三角形斜边中线的性质得出,则有,最后利用三角形外角的性质即可得出答案.
【详解】∵在中,是斜边上的中线,,
∴.
∵,
∴,
∴.
故答案为:.
【点睛】本题主要考查直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质,掌握直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质是解题的关键.
13.在,,1,2,3五个数中随机选取一个数作为二次函数中的值,则该二次函数图象开口向上的概率是_____________.
【答案】
【解析】
【分析】
当a大于0时,该二次函数图象开口向上,根据这个性质利用简单概率计算公式可得解.
【详解】解:当a大于0时,二次函数图象开口向上,
,,1,2,3中大于0的数有3个,
所以该二次函数图象开口向上的概率是,
故答案为:.
【点睛】本题考查了二次函数的性质和简单的概率计算,难度不大,是一道较好的中考题.
14.已知,则代数式的值为___________.
【答案】4
【解析】
【分析】
先根据整式的乘法去括号化简代数式,再将已知式子的值代入求值即可.
【详解】
将代入得:原式
故答案为:4.
【点睛】本题考查了代数式的化简求值,利用整式的乘法对代数式进行化简是解题关键.
15.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为_____.
【答案】
【解析】
【分析】
设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.
【详解】设买美酒x斗,买普通酒y斗,
依题意得:,
故答案是:.
【点睛】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.
16.如图,为半⊙O的直径,,是半圆上的三等分点,,与半⊙O相切于点,点为上一动点(不与点,重合),直线交于点,于点,延长交于点,则下列结论正确的是______________.(写出所有正确结论的序号)
①;②的长为;③;④;⑤为定值.
【答案】②⑤
【解析】
【分析】
①先根据圆的切线的性质可得,再根据半圆上的三等分点可得,然后根据圆周角定理可得,最后假设,根据角的和差、三角形的外角性质可得,这与点为上一动点相矛盾,由此即可得;
②根据弧长公式即可得;
③先根据等边三角形的性质可得,再根据角的和差即可得;
④先根据三角形的外角性质可得,从而可得对应角与不可能相等,由此即可得;⑤先根据相似三角形的判定与性质可得,从而可得,再根据等边三角形的性质可得,由此即可得.
【详解】如图,连接OP
与半⊙O相切于点
是半圆上的三等分点
是等边三角形
由圆周角定理得:
假设,则
又点为上一动点
不是一个定值,与相矛盾
即PB与PD不一定相等,结论①错误
则的长为,结论②正确
是等边三角形,
,则结论③错误
,即对应角与不可能相等
与不相似,则结论④错误
在和中,
,即
又是等边三角形,
即为定值,结论⑤正确
综上,结论正确的是②⑤
故答案为:②⑤.
【点睛】本题考查了圆周角定理、圆的切线的性质、弧长公式、相似三角形的判定与性质、等边三角形的判定与性质等知识点,较难的题①,先假设结论成立,再推出矛盾点是解题关键.
三、解答题(解答应写出必要的文字说明、证明过程或演算步骤)
17.计算:
【答案】.
【解析】
【分析】
先计算负整数指数幂、特殊角的余弦值、零指数幂、化简绝对值,再计算实数的混合运算即可.
【详解】原式
.
【点睛】本题考查了负整数指数幂、特殊角的余弦值、零指数幂、实数的混合运算等知识点,熟记各运算法则是解题关键.
18.如图,点,在的边,上,,,连接,.求证:四边形是平行四边形.
【答案】见解析.
【解析】
【分析】
根据平行四边形的性质得到AD∥BC,AD=BC,进而得到BE=FD即可证明.
【详解】证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵,,
∴BE=FD,
∴四边形是平行四边形.
【点睛】本题考查了平行四边形的性质与判定,解题的关键是灵活运用平行四边形的性质,并熟悉平行四边形的判定定理.
19.如图,一次函数的图象与反比例函数(为常数且)的图象相交于,两点.
(1)求反比例函数的表达式;
(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求的值.
【答案】(1);(2)b的值为1或9.
【解析】
【分析】
(1)先将点A的坐标代入一次函数的表达式可求出m的值,从而可得点A的坐标,再将点A的坐标代入反比例函数的表达式即可得;
(2)先根据一次函数的图象平移规律得出平移后的一次函数的解析式,再与反比例函数的解析式联立,化简可得一个关于x的一元二次方程,然后利用方程的根的判别式求解即可得.
【详解】(1)由题意,将点代入一次函数得:
将点代入得:,解得
则反比例函数的表达式为;
(2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为
联立
整理得:
一次函数的图象与反比例函数的图象有且只有一个交点
关于x的一元二次方程只有一个实数根
此方程的根的判别式
解得
则b的值为1或9.
【点睛】本题考查了一次函数与反比例函数的综合、一次函数图象的平移、一元二次方程的根的判别式等知识点,较难的是题(2),将直线与双曲线的交点问题转化为一元二次方程的根的问题是解题关键.
20.我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如下两幅不完整的统计图:
(1)本次随机调查的学生人数为 人;
(2)补全条形统计图;
(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;
(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.
【答案】(1)50;(2)见详解;(3)288人;(4).
【解析】
【分析】
(1)利用园艺的人数除以百分比,即可得到答案;
(2)先求出编织的人数,再补全条形图即可;
(3)利用总人数乘以厨艺所占的百分比,即可得到答案;
(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.
【详解】解:(1)根据题意,本次随机调查的学生人数为:
(人);
故答案为:50;
(2)选择编织的人数为:(人),
补全条形图如下:
(3)该校七年级学生选择“厨艺”劳动课程人数为:
(人);
(4)根据题意,“园艺、电工、木工、编织”可分别用字母A,B,C,D表示,则
列表如下:
∵共有12种等可能的结果,其中恰好抽到“园艺、编织”类的有2种结果,
∴恰好抽到“园艺、编织”类的概率为:;
【点睛】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
21.为做好复工复产,某工厂用、两种型号机器人搬运原料,已知型机器人比型机器人每小时多搬运,且型机器人搬运所用时间与型机器人搬运所用时间相等,求这两种机器人每小时分别搬运多少原料.
【答案】A型号机器人每小时搬运原料,B型号机器人每小时搬运原料.
【解析】
【分析】
设A型号机器人每小时搬运原料,先求出B型号机器人每小时搬运原料,再根据“型机器人搬运所用时间与型机器人搬运所用时间相等”建立方程,然后求解即可.
【详解】设A型号机器人每小时搬运原料,则B型号机器人每小时搬运原料
由题意得:
解得
经检验,是所列分式方程的解
则
答:A型号机器人每小时搬运原料,B型号机器人每小时搬运原料.
【点睛】本题考查了分式方程的实际应用,依据题意,正确建立分式方程是解题关键.需注意的是,求出分式方程的解后,一定要进行检验.
22.共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图,两地向地新建,两条笔直的污水收集管道,现测得地在地北偏东方向上,在地北偏西方向上,的距离为,求新建管道的总长度.(结果精确到,,,,)
【答案】新建管道的总长度约为.
【解析】
【分析】
如图(见解析),先根据方位角的定义求出,设,则,再在中,根据等腰直角三角形的判定与性质可得AC、CD的长,然后在中,解直角三角形可得x的值,从而可得AC、BC的长,由此即可得出答案.
【详解】如图,过点C作于点D
由题意得:,
设,则
是等腰直角三角形
在中,,即
解得
经检验,是所列分式方程的解
,
在中,,即
解得
则
答:新建管道的总长度约为.
【点睛】本题考查了等腰直角三角形的判定与性质、方位角的定义、解直角三角形等知识点,掌握解直角三角形的方法是解题关键.
23.如图1,在矩形中,,动点,分别从点,点同时以每秒1个单位长度的速度出发,且分别在边上沿,的方向运动,当点运动到点时,两点同时停止运动,设点运动的时间为,连接,过点作,与边相交于点,连接.
(1)如图2,当时,延长交边于点.求证:;
(2)在(1)的条件下,试探究线段三者之间的等量关系,并加以证明;
(3)如图3,当时,延长交边于点,连接,若平分,求的值.
【答案】(1)证明见解析;(2),证明见解析;(3).
【解析】
【分析】
(1)先根据运动速度和时间求出,再根据勾股定理可得,从而可得,然后根据矩形的性质可得,从而可得,,最后根据三角形全等的判定定理与性质即可得证;
(2)如图(见解析),连接FQ,先根据(1)三角形全等的性质可得,再根据垂直平分线的判定与性质可得,然后根据勾股定理、等量代换即可得证;
(3)先根据角平分线的性质得出,再根据直角三角形全等的判定定理与性质得出,然后根据等腰三角形的三线合一得出,又分别在和中,利用余弦三角函数可求出t的值,从而可得CP、AP的长,最后根据平行线分线段成比例定理即可得.
【详解】(1)由题意得:
四边形ABCD是矩形
,
在和中,
;
(2),证明如下:
如图,连接FQ
由(1)已证:
PQ是线段EF的垂直平分线
在中,由勾股定理得:
则;
(3)如图,设FQ与AC的交点为点O
由题意得:,,
平分,
(角平分线的性质)
是等腰三角形
在和中,
,即是的角平分线
(等腰三角形的三线合一)
在中,
在中,,即
解得
,即
故的值为.
【点睛】本题考查了三角形全等的判定定理与性质、矩形的性质、余弦三角函数、平行线分线段成比例定理等知识点,较难的是题(3),熟练利用三角形全等的判定定理与性质、等腰三角形的三线合一是解题关键.
24.如图1所示,在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点.
(1)求抛物线的表达式;
(2)如图2,将抛物线先向左平移1个单位,再向下平移3个单位,得到抛物线,若抛物线与抛物线相交于点,连接,,.
①求点的坐标;
②判断的形状,并说明理由;
(3)在(2)的条件下,抛物线上是否存在点,使得为等腰直角三角形,若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2)①点的坐标;②是等腰直角三角形,理由见解析;(3)或.
【解析】
分析】
(1)将点代入即可得;
(2)①先根据二次函数的平移规律得出抛物线的表达式,再联立两条抛物线的表达式求解即可得;
②先根据抛物线的表达式求出点B、C的坐标,再利用两点之间的距离公式分别求出BC、BD、CD的长,然后根据勾股定理的逆定理、等腰三角形的定义即可得;
(3)设点P的坐标为,根据等腰直角三角形的定义分三种情况:①当时,先根据等腰直角三角形的性质、线段中点的点坐标求出点P的坐标,再代入抛物线的表达式,检验点P是否在抛物线的表达式上即可;②当时,先根据平行四边形的判定得出四边形BCDP是平行四边形,再根据点C至点B的平移方式与点D至点P的平移方式相同可求出点P的坐标,然后代入抛物线的表达式,检验点P是否在抛物线的表达式上即可;③当时,先根据等腰直角三角形的性质得出点P在在线段BD的垂直平分线上,再利用待定系数法求出BD的垂直平分线上所在直线的解析式,然后根据两点之间的距离公式和可求出点P的坐标,最后代入抛物线的表达式,检验点P是否在抛物线的表达式上即可.
【详解】(1)将点代入抛物线的表达式得:
解得
则抛物线的表达式为
故抛物线的表达式为;
(2)①由二次函数的平移规律得:抛物线的表达式为
即
联立,解得
则点的坐标为;
②对于
当时,,解得或
则点B的坐标为
当时,,则点C的坐标为
由两点之间的距离公式得:
则,
故是等腰直角三角形;
(3)抛物线的表达式为
设点P的坐标为
由题意,分以下三种情况:
①当时,为等腰直角三角形
是等腰直角三角形,,
点D是CP的中点
则,解得
即点P的坐标为
对于抛物线表达式
当时,
即点在抛物线上,符合题意
②当时,为等腰直角三角形
,
,
四边形BCDP是平行四边形
点C至点B的平移方式与点D至点P的平移方式相同
点C至点B的平移方式为先向下平移4个单位长度,再向右平移2个单位长度
即点P坐标为
对于抛物线的表达式
当时,
即点在抛物线上,符合题意
③当时,为等腰直角三角形
则点P在线段BD的垂直平分线上
设直线BD的解析式
将点代入得:,解得
则直线BD的解析式
设BD的垂线平分线所在直线的解析式为
点的中点的坐标为,即
将点代入得:,解得
则BD的垂线平分线所在直线的解析式为
因此有,即点P的坐标为
由两点之间的距离公式得:
又,为等腰直角三角形
则
解得或
当时,,即点P坐标为
当时,,即点P的坐标为
对于抛物线的表达式
当时,
即点不在抛物线上,不符合题意,舍去
当时,
即点不在抛物线上,不符合题意,舍去
综上,符合条件的点P的坐标为或.
【点睛】本题考查了利用待定系数法求二次函数的解析式、二次函数图象的平移,点坐标的平移、等腰直角三角形的判定与性质等知识点,较难的是题(3),正确分三种情况,结合等腰直角三角形的性质是解题关键.