分享
2019年湖北省随州市中考数学试卷.doc
下载文档

ID:3180623

大小:768KB

页数:33页

格式:DOC

时间:2024-01-29

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2019 湖北省 随州市 中考 数学试卷
2019年湖北省随州市中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,有且只有一个是正确的) 1.(3分)(2019•随州)﹣3的绝对值为(  ) A.3 B.﹣3 C.±3 D.9 2.(3分)(2019•随州)地球的半径约为6370000m,用科学记数法表示正确的是(  ) A.637×104m B.63.7×105m C.6.37×106m D.6.37×107m 3.(3分)(2019•随州)如图,直线ll∥12,直角三角板的直角顶点C在直线l1上,一锐角顶点B在直线l2上,若∠1=35°,则∠2的度数是(  ) A.65° B.55° C.45° D.35° 4.(3分)(2019•随州)下列运算正确的是(  ) A.4m﹣m=4 B.(a2)3 =a5 C.(x+y )2=x2+y2 D.﹣(t﹣1)=1﹣t 5.(3分)(2019•随州)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表: 投中次数 3 5 6 7 8 人数 1 3 2 2 2 则这些队员投中次数的众数、中位数和平均数分别为(  ) A.5,6,6 B.2,6,6 C.5,5,6 D.5,6,5 6.(3分)(2019•随州)如图是一个几何体的三视图,则这个几何体的表面积为(  ) A.2π B.3π C.4π D.5π 7.(3分)(2019•随州)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是(  ) A. B. C. D. 8.(3分)(2019•随州)如图,在平行四边形ABCD中,E为BC的中点,BD,AE交于点O,若随机向平行四边形ABCD内投一粒米,则米粒落在图中阴影部分的概率为(  ) A. B. C. D. 9.(3分)(2019•随州)“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为(  ) A.5+3 B.5+ C.5﹣ D.5﹣3 10.(3分)(2019•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0;②a+b+c=0;③ac+b+1=0;④2+c是关于x的一元二次方程ax2+bx+c=0的一个根.其中正确的有(  ) A.1个 B.2个 C.3个 D.4个 二、填空题(本大题共有6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上) 11.(3分)(2019•随州)计算:(π﹣2019)0﹣2cos60°=   . 12.(3分)(2019•随州)如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为   . 13.(3分)(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为   和   . 14.(3分)(2019•随州)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为 (1,0),点A在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位,则变换后点A的对应点的坐标为   . 15.(3分)(2019•随州)如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为   . 16.(3分)(2019•随州)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF. 给出下列判断: ①∠EAG=45°; ②若DE=a,则AG∥CF; ③若E为CD的中点,则△GFC的面积为a2; ④若CF=FG,则DE=(﹣1)a; ⑤BG•DE+AF•GE=a2. 其中正确的是   .(写出所有正确判断的序号) 三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程) 17.(5分)(2019•随州)解关于x的分式方程:=. 18.(7分)(2019•随州)已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2. (1)求k的取值范围; (2)若x1+x2=3,求k的值及方程的根. 19.(10分)(2019•随州)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题: (1)接受问卷调查的学生共有   人,条形统计图中m的值为   ; (2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为   ; (3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为   人; (4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率. 20.(8分)(2019•随州)在一次海上救援中,两艘专业救助船A,B同时收到某事故渔船的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里. (1)求收到求救讯息时事故渔船P与救助船B之间的距离; (2)若救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达. 21.(9分)(2019•随州)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC的延长线上,且∠BAC=2∠CBF. (1)求证:BF是⊙O的切线; (2)若⊙O的直径为3,sin∠CBF=,求BC和BF的长. 22.(11分)(2019•随州)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表: 销售价格x(元/千克) 2 4 …… 10 市场需求量q(百千克) 12 10 …… 4 已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克. (1)直接写出q与x的函数关系式,并注明自变量x的取值范围; (2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃. ①当每天的半成品食材能全部售出时,求x的取值范围; ②求厂家每天获得的利润y(百元)与销售价格x的函数关系式; (3)在(2)的条件下,当x为   元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为   元/千克. 23.(10分)(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为,易知=10m+n;同理,一个三位数、四位数等均可以用此记法,如=100a+10b+c. 【基础训练】 (1)解方程填空: ①若+=45,则x=   ; ②若﹣=26,则y=   ; ③若+=,则t=   ; 【能力提升】 (2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则+一定能被   整除,﹣一定能被   整除,•﹣mn一定能被   整除;(请从大于5的整数中选择合适的数填空) 【探索发现】 (3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532﹣235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”. ①该“卡普雷卡尔黑洞数”为   ; ②设任选的三位数为(不妨设a>b>c),试说明其均可产生该黑洞数. 24.(12分)(2019•随州)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与y轴交于点A(0,6),与x轴交于点B(﹣2,0),C(6,0). (1)直接写出抛物线的解析式及其对称轴; (2)如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P作PD⊥AC于点E,交x轴于点D,过点P作PG∥AB交AC于点F,交x轴于点G.设线段DG的长为d,求d与m的函数关系式,并注明m的取值范围; (3)在(2)的条件下,若△PDG的面积为, ①求点P的坐标; ②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得△ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由. 2019年湖北省随州市中考数学试卷 参考答案与试题解析 一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,有且只有一个是正确的) 1.(3分)(2019•随州)﹣3的绝对值为(  ) A.3 B.﹣3 C.±3 D.9 【分析】根据负数的绝对值等于它的相反数解答. 【解答】解:﹣3的绝对值为3, 即|﹣3|=3. 故选:A. 2.(3分)(2019•随州)地球的半径约为6370000m,用科学记数法表示正确的是(  ) A.637×104m B.63.7×105m C.6.37×106m D.6.37×107m 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数. 【解答】解:6370000m,用科学记数法表示正确的是6.37×106m, 故选:C. 3.(3分)(2019•随州)如图,直线ll∥12,直角三角板的直角顶点C在直线l1上,一锐角顶点B在直线l2上,若∠1=35°,则∠2的度数是(  ) A.65° B.55° C.45° D.35° 【分析】根据余角的定义得到∠3,根据两直线平行,内错角相等可得∠3=∠2. 【解答】解:如图,∵∠1+∠3=90°,∠1=35°, ∴∠3=55°. 又∵直线ll∥12, ∴∠2=∠3=55°. 故选:B. 4.(3分)(2019•随州)下列运算正确的是(  ) A.4m﹣m=4 B.(a2)3 =a5 C.(x+y )2=x2+y2 D.﹣(t﹣1)=1﹣t 【分析】直接利用合并同类项法则以及幂的乘方运算法则、完全平方公式分别化简得出答案. 【解答】解:A、4m﹣m=3m,故此选项错误; B、(a2)3 =a6,故此选项错误; C、(x+y )2=x2+2xy+y2,故此选项错误; D、﹣(t﹣1)=1﹣t,正确. 故选:D. 5.(3分)(2019•随州)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表: 投中次数 3 5 6 7 8 人数 1 3 2 2 2 则这些队员投中次数的众数、中位数和平均数分别为(  ) A.5,6,6 B.2,6,6 C.5,5,6 D.5,6,5 【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数. 【解答】解:在这一组数据中5是出现次数最多的,故众数是5; 处于中间位置的两个数的平均数是(6+6)÷2=6,那么由中位数的定义可知,这组数据的中位数是6. 平均数是:(3+15+12+14+16)÷10=6, 所以答案为:5、6、6, 故选:A. 6.(3分)(2019•随州)如图是一个几何体的三视图,则这个几何体的表面积为(  ) A.2π B.3π C.4π D.5π 【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,判断出几何体的形状,再根据三视图的数据,求出几何体的表面积即可. 【解答】解:根据三视图可得这个几何体是圆锥, 底面积=π×12=π, 侧面积为=π•3=3π, 则这个几何体的表面积=π+3π=4π; 故选:C. 7.(3分)(2019•随州)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是(  ) A. B. C. D. 【分析】根据乌龟比兔子早出发,而早到终点逐一判断即可得. 【解答】解:由于乌龟比兔子早出发,而早到终点; 故B选项正确; 故选:B. 8.(3分)(2019•随州)如图,在平行四边形ABCD中,E为BC的中点,BD,AE交于点O,若随机向平行四边形ABCD内投一粒米,则米粒落在图中阴影部分的概率为(  ) A. B. C. D. 【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数. 【解答】解:∵E为BC的中点, ∴, ∴=, ∴S△BOE=S△AOB,S△AOB=S△ABD, ∴S△BOE=S△ABD=S▱ABCD, ∴米粒落在图中阴影部分的概率为, 故选:B. 9.(3分)(2019•随州)“分母有理化”是我们常用的一种化简的方法,如:==7+4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为(  ) A.5+3 B.5+ C.5﹣ D.5﹣3 【分析】根据二次根式的运算法则即可求出答案. 【解答】解:设x=﹣,且>, ∴x<0, ∴x2=6﹣3﹣2+6+3, ∴x2=12﹣2×3=6, ∴x=, ∵=5﹣2, ∴原式=5﹣2﹣ =5﹣3, 故选:D. 10.(3分)(2019•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0;②a+b+c=0;③ac+b+1=0;④2+c是关于x的一元二次方程ax2+bx+c=0的一个根.其中正确的有(  ) A.1个 B.2个 C.3个 D.4个 【分析】①由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断; ②根据对称轴是直线x=1,可得b=﹣2a,代入a+b+c,可对②进行判断; ③利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c即可对③作出判断; ④根据抛物线的对称性得到B点的坐标,即可对④作出判断. 【解答】解:∵抛物线开口向下, ∴a<0, ∵抛物线的对称轴为直线x=﹣=1, ∴b=﹣2a>0, ∵抛物线与y轴的交点在x轴上方, ∴c>0, ∴abc<0,所以①正确; ∵b=﹣2a, ∴a+b=a﹣a=0, ∵c>0, ∴a+b+c>0,所以②错误; ∵C(0,c),OA=OC, ∴A(﹣c,0), 把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0, ∴ac﹣b+1=0,所以③错误; ∵A(﹣c,0),对称轴为直线x=1, ∴B(2+c,0), ∴2+c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确; 故选:B. 二、填空题(本大题共有6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上) 11.(3分)(2019•随州)计算:(π﹣2019)0﹣2cos60°= 0 . 【分析】原式利用零指数幂法则,以及特殊角的三角函数值计算即可求出值. 【解答】解:原式=1﹣2×=1﹣1=0, 故答案为:0 12.(3分)(2019•随州)如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA= 50°,则∠C的度数为 40° . 【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后根据圆周角定理得到∠C的度数. 【解答】解:∵OA=OB, ∴∠OAB=∠OBA=50°, ∴∠AOB=180°﹣50°﹣50°=80°, ∴∠C=∠AOB=40°. 故答案为40°. 13.(3分)(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为 2 和 9 . 【分析】根据题意要求①②可得关于所要求的两数的两个等式,解出两数即可. 【解答】解:设图中两空白圆圈内应填写的数字从左到右依次为a,b ∵外圆两直径上的四个数字之和相等 ∴4+6+7+8=a+3+b+11① ∵内、外两个圆周上的四个数字之和相等 ∴3+6+b+7=a+4+11+8② 联立①②解得:a=2,b=9 ∴图中两空白圆圈内应填写的数字从左到右依次为2,9 故答案为:2;9. 14.(3分)(2019•随州)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为 (1,0),点A在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位,则变换后点A的对应点的坐标为 (﹣2,2) . 【分析】根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可. 【解答】解:∵点C的坐标为(1,0),AC=2, ∴点A的坐标为(3,0), 如图所示,将Rt△ABC先绕点C逆时针旋转90°, 则点A′的坐标为(1,2), 再向左平移3个单位长度,则变换后点A′的对应点坐标为(﹣2,2), 故答案为:(﹣2,2). 15.(3分)(2019•随州)如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为 4 . 【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B的横纵坐标的积即是反比例函数的比例系数. 【解答】解:∵四边形OCBA是矩形, ∴AB=OC,OA=BC, 设B点的坐标为(a,b),则E的坐标为E(a,), ∵D为AB的中点, ∴D(a,b) ∵D、E在反比例函数的图象上, ∴ab=k, ∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣k﹣k﹣•a•(b﹣)=3, ∴ab﹣k﹣k﹣ab+k=3, 解得:k=4, 故答案为:4. 16.(3分)(2019•随州)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF. 给出下列判断: ①∠EAG=45°; ②若DE=a,则AG∥CF; ③若E为CD的中点,则△GFC的面积为a2; ④若CF=FG,则DE=(﹣1)a; ⑤BG•DE+AF•GE=a2. 其中正确的是 ①②④⑤ .(写出所有正确判断的序号) 【分析】①由折叠得AD=AF=AB,再由HL定理证明Rt△ABG≌Rt△AFG便可判定正误; ②设BG=GF=x,由勾股定理可得(x+a)2=x2+(a)2,求得BG=a,进而得GC=GF,得∠GFC=∠GCF,再证明∠AGB=∠GCF,便可判断正误; ③设BG=GF=y,则CG=a﹣y,由勾股定理得y的方程求得BG,GF,EF,再由同高的两个三角形的面积比等于底边之比,求得△CGF的面积,便可判断正误; ④证明∠FEC=∠FCE,得EF=CF=GF,进而得EG=2DE,CG=CE=a﹣DE,由等腰直角三角形的斜边与直角边的关系式便可得结论,进而判断正误; ⑤设BG=GF=b,DE=EF=c,则CG=a﹣b,CE=a﹣c,由勾股定理得bc=a2﹣ab﹣ac,再得△CEG的面积为BG•DE,再由五边形ABGED的面积加上△CEG的面积等于正方形的面积得结论,进而判断正误. 【解答】解:①∵四边形ABCD是正方形, ∴AB=BC=AD=a, ∵将△ADE沿AE对折至△AFE, ∴∠AFE=∠ADE=∠ABG=90°,AF=AD=AB,EF=DE,∠DAE=∠FAE, 在Rt△ABG和Rt△AFG中, ∴Rt△ABG≌Rt△AFG(HL), ∴∠BAG=∠FAG, ∴∠GAE=∠GAF+∠EAF=90°=45°,故①正确; ②∴BG=GF,∠BGA=∠FGA, 设BG=GF=x,∵DE=a, ∴EF=a, ∴CG=a﹣x, 在Rt△EGC中,EG=x+a,CE=a,由勾股定理可得(x+a)2=x2+(a)2, 解得x=a,此时BG=CG=a, ∴GC=GF=a, ∴∠GFC=∠GCF, 且∠BGF=∠GFC+∠GCF=2∠GCF, ∴2∠AGB=2∠GCF, ∴∠AGB=∠GCF, ∴AG∥CF, ∴②正确; ③若E为CD的中点,则DE=CE=EF=, 设BG=GF=y,则CG=a﹣y, CG2+CE2=EG2, 即, 解得,y=a, ∴BG=GF=,CG=a﹣, ∴, ∴, 故③错误; ④当CF=FG,则∠FGC=∠FCG, ∵∠FGC+∠FEC=∠FCG+∠FCE=90°, ∴∠FEC=∠FCE, ∴EF=CF=GF, ∴BG=GF=EF=DE, ∴EG=2DE,CG=CE=a﹣DE, ∴,即, ∴DE=(﹣1)a, 故④正确; ⑤设BG=GF=b,DE=EF=c,则CG=a﹣b,CE=a﹣c, 由勾股定理得,(b+y)2=(a﹣b)2+(a﹣c)2,整理得bc=a2﹣ab﹣ac, ∴=, 即S△CEG=BG•DE, ∵S△ABG=S△AFG,S△AEF=S△ADE, ∴, ∵S五边形ABGED+S△CEG=S正方形ABCD, ∴BG•DE+AF•EG=a2, 故⑤正确. 故答案为:①②④⑤. 三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程) 17.(5分)(2019•随州)解关于x的分式方程:=. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解. 【解答】解:去分母得:27﹣9x=18+6x, 移项合并得:15x=9, 解得:x=, 经检验x=是分式方程的解. 18.(7分)(2019•随州)已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2. (1)求k的取值范围; (2)若x1+x2=3,求k的值及方程的根. 【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可; (2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可. 【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根, ∴△>0, ∴(2k+1)2﹣4(k2+1)>0, 整理得,4k﹣3>0, 解得:k>, 故实数k的取值范围为k>; (2)∵方程的两个根分别为x1,x2, ∴x1+x2=2k+1=3, 解得:k=1, ∴原方程为x2﹣3x+2=0, ∴x1=1,x2=2. 19.(10分)(2019•随州)“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题: (1)接受问卷调查的学生共有 60 人,条形统计图中m的值为 10 ; (2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为 96° ; (3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为 1020 人; (4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率. 【分析】(1)用“基本了解”的人数除以它所占的百分比得到调查的总人数; (2)用360°乘以扇形统计图中“了解很少”部分所占的比例即可; (3)用总人数1800乘以达到“非常了解”和“基本了解”程度的人数所占的比例即可; (4)画树状图展示所有12种等可能的结果数,找出恰好抽到1个男生和1个女生的结果数,然后利用概率公式求解. 【解答】解:(1)接受问卷调查的学生共有30÷50%=60(人),m=60﹣4﹣30﹣16=10; 故答案为:60,10; (2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数=360°×=96°; 故答案为:96°; (3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:1800×=1020(人); 故答案为:1020; (4)由题意列树状图: 由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为=. 20.(8分)(2019•随州)在一次海上救援中,两艘专业救助船A,B同时收到某事故渔船的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距120海里. (1)求收到求救讯息时事故渔船P与救助船B之间的距离; (2)若救助船A,B分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达. 【分析】(1)作PC⊥AB于C,则∠PCA=∠PB=90°,由题意得:PA=120海里,∠A=30°,∠BPC=45°,由直角三角形的性质得出PC=PA=60海里,△BCP是等腰直角三角形,得出PB=PC=60海里即可; (2)求出救助船A、B所用的时间,即可得出结论. 【解答】解:(1)作PC⊥AB于C,如图所示: 则∠PCA=∠PB=90°, 由题意得:PA=120海里,∠A=30°,∠BPC=45°, ∴PC=PA=60海里,△BCP是等腰直角三角形, ∴BC=PC=60海里,PB=PC=60海里; 答:收到求救讯息时事故渔船P与救助船B之间的距离为60海里; (2)∵PA=120海里,PB=60海里,救助船A,B分别以40海里/小时、30海里/小时的速度同时出发, ∴救助船A所用的时间为=3(小时),救助船B所用的时间为=2(小时), ∵3>2, ∴救助船B先到达. 21.(9分)(2019•随州)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,点F在AC的延长线上,且∠BAC=2∠CBF. (1)求证:BF是⊙O的切线; (2)若⊙O的直径为3,sin∠CBF=,求BC和BF的长. 【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°. (2)解直角三角形即可得到结论. 【解答】(1)证明:连接AE, ∵AB是⊙O的直径, ∴∠AEB=90°, ∴∠1+∠2=90°. ∵AB=AC, ∴2∠1=∠CAB. ∵∠BAC=2∠CBF, ∴∠1=∠CBF ∴∠CBF+∠2=90° 即∠ABF=90° ∵AB是⊙O的直径, ∴直线BF是⊙O的切线; (2)解:过点C作CH⊥BF于H. ∵sin∠CBF=,∠1=∠CBF, ∴sin∠1=, ∵在Rt△AEB中,∠AEB=90°,AB=3, ∴BE=AB•sin∠1=3×=, ∵AB=AC,∠AEB=90°, ∴BC=2BE=2, ∵sin∠CBF==, ∴CH=2, ∵CH∥AB, ∴=,即=, ∴CF=6, ∴AF=AC+CF=9, ∴BF==6. 22.(11分)(2019•随州)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表: 销售价格x(元/千克) 2 4 …… 10 市场需求量q(百千克) 12 10 …… 4 已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克. (1)直接写出q与x的函数关系式,并注明自变量x的取值范围; (2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃. ①当每天的半成品食材能全部售出时,求x的取值范围; ②求厂家每天获得的利润y(百元)与销售价格x的函数关系式; (3)在(2)的条件下,当x为  元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为 5 元/千克. 【分析】(1)根据表格数据,可设q与x的函数关系式为:q=kx+b,利用待定系数法即可求 (2)①根据题意,当每天的半成品食材能全部售出时,有p≤q,②根据销售利润=销售量×(售价﹣进价),列出厂家每天获得的利润y(百元)与销售价格x的函数关系式 (3)根据(2)中的条件分情况讨论即可 【解答】解: (1)由表格的数据,设q与x的函数关系式为:q=kx+b 根据表格的数据得,解得 故q与x的函数关系式为:q=﹣x+14,其中2≤x≤10 (2)①当每天的半成品食材能全部售出时,有p≤q 即x+8≤﹣x+14,解得x≤4 又2≤x≤10,所以此时2≤x≤4 ②由①可知,当2≤x≤4时, y=(x﹣2)p=(x﹣2)(x+8)=x2+7x﹣16 当4<x≤10时,y=(x﹣2)q﹣2(p﹣q) =(x﹣2)(﹣x+14)﹣2[x+8﹣(﹣x+14)] =﹣x2+13x﹣16 即有y= (3)当2≤x≤4时, y=x2+7x﹣16的对称轴为x===﹣7 ∴当2≤x≤4时,除x的增大而增大 ∴x=4时有最大值,y==20 当4<x≤10时 y=﹣x2+13x﹣16=﹣(x﹣)2+, ∵﹣1<0,>4 ∴x=时取最大值 即此时y有最大利润 要使每天的利润不低于24百元,则当2≤x≤4时,显然不符合 故y=﹣(x﹣)2+≥24,解得x≤5 故当x=5时,能保证不低于24百元 故答案为:,5 23.(10分)(2019•随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为,易知=10m+n;同理,一个三位数、四位数等均可以用此记法,如=100a+10b+c. 【基础训练】 (1)解方程填空: ①若+=45,则x= 2 ; ②若﹣=26,则y= 4 ; ③若+=,则t= 7 ; 【能力提升】 (2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则+一定能被 11 整除,﹣一定能被 9 整除,•﹣mn一定能被 10 整除;(请从大于5的整数中选择合适的数填空) 【探索发现】 (3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532﹣235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”. ①该“卡普雷卡尔黑洞数”为 495 ; ②设任选的三位数为(不妨设a>b>c),试说明其均可产生该黑洞数. 【分析】(1)①②③均按定义列出方程求解即可; (2)按定义式子展开化简即可; (3)①选取题干中数据,按照定义式子展开,化简到出现循环即可; ②按定义式子化简,注意条件a>b>c的应用,化简到出现循环数495即可. 【解答】解:(1)①∵=10m+n ∴若+=45,则10×2+x+10x+3=45 ∴x=2 故答案为:2. ②若﹣=26,则10×7+y﹣(10y+8)=26 解得y=4 故答案为:4. ③由=100a+10b+c.及四位数的类似公式得 若+=,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1 ∴100t=700 ∴t=7 故答案为:7. (2)∵+=10m+n+10n+m=11m+11n=11(m+n) ∴则+一定能被 11整除 ∵﹣=10m+n﹣(10n+m)=9m﹣9n=9(m﹣n) ∴﹣一定能被9整除. ∵•﹣mn=(10m+n)(10n+m)﹣mn=100mn+10m2+10n2+mn﹣mn=10(10mn+m2+n2) ∴•﹣mn一定能被10整除. 故答案为:11;9;10. (3)①若选的数为325,则用532﹣235=297,以下按照上述规则继续计算 972﹣279=693 963﹣369=594

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开