2021年山东省泰安市中考数学真题试卷
解析版
2021
山东省
泰安市
中考
数学
试卷
解析
2021年山东省泰安市中考数学试卷
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)
1.下列各数:﹣4,﹣2.8,0,|﹣4|,其中比﹣3小的数是( )
A.﹣4 B.|﹣4| C.0 D.﹣2.8
2.下列运算正确的是( )
A.2x2+3x3=5x5 B.(﹣2x)3=﹣6x3
C.(x+y)2=x2+y2 D.(3x+2)(2﹣3x)=4﹣9x2
3.如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是( )
A. B. C. D.
4.如图,直线m∥n,三角尺的直角顶点在直线m上,且三角尺的直角被直线m平分,若∠1=60°,则下列结论错误的是( )
A.∠2=75° B.∠3=45° C.∠4=105° D.∠5=130°
5.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为( )
A.7h,7h B.8h,7.5h C.7h,7.5h D.8h,8h
6.如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是优弧GE上一点,∠CDE=18°,则∠GFE的度数是( )
A.50° B.48° C.45° D.36°
7.已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>﹣ B.k< C.k>﹣且k≠0 D.k<且k≠0
8.将抛物线y=﹣x2﹣2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A.(﹣2,2) B.(﹣1,1) C.(0,6) D.(1,﹣3)
9.如图,四边形ABCD是⊙O的内接四边形,∠B=90°,∠BCD=120°,AB=2,CD=1,则AD的长为( )
A.2﹣2 B.3﹣ C.4﹣ D.2
10.如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:
①AM=CN;
②若MD=AM,∠A=90°,则BM=CM;
③若MD=2AM,则S△MNC=S△BNE;
④若AB=MN,则△MFN与△DFC全等.
其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
11.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)( )
A.136.6米 B.86.7米 C.186.7米 D.86.6米
12.如图,在矩形ABCD中,AB=5,BC=5,点P在线段BC上运动(含B、C两点),连接AP,以点A为中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为( )
A. B. C. D.3
二、填空题(本大题共6小题,满分18分。只要求填写最后结果,每小题填对得4分)
13.(3分)2021年5月15日7时18分,天问一号着陆巡视器成功着陆于火星,我国首次火星探测任务着陆火星取得圆满成功.探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 千米.
14.(3分)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为 .
15.(3分)如图是抛物线y=ax2+bx+c的部分图象,图象过点(3,0),对称轴为直线x=1,有下列四个结论:①abc>0;②a﹣b+c=0;③y的最大值为3;④方程ax2+bx+c+1=0有实数根.其中正确的为 (将所有正确结论的序号都填入).
16.(3分)若△ABC为直角三角形,AC=BC=4,以BC为直径画半圆如图所示,则阴影部分的面积为 .
17.(3分)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为 .
18.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形AnBnBn+1∁n的边长为 (结果用含正整数n的代数式表示).
三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)
19.(10分)(1)先化简,再求值:,其中a=+3;
(2)解不等式:1﹣.
20.(10分)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息,解答下列问题:
(1)本次共调查了 名学生;C组所在扇形的圆心角为 度;
(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?
(3)若E组14名学生中有4人满分,设这4名学生为E1,E2,E3,E4,从其中抽取2名学生代表学校参加上一级比赛,请用列表或画树状图的方法求恰好抽到E1,E2的概率.
竞赛成绩统计表(成绩满分100分)
组别
分数
人数
A组
75<x≤80
4
B组
80<x≤85
C组
85<x≤90
10
D组
90<x≤95
E组
95<x≤100
14
合计
21.(10分)如图,点P为函数y=x+1与函数y=(x>0)图象的交点,点P的纵坐标为4,PB⊥x轴,垂足为点B.
(1)求m的值;
(2)点M是函数y=(x>0)图象上一动点,过点M作MD⊥BP于点D,若tan∠PMD=,求点M的坐标.
22.(10分)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
(1)求该厂当前参加生产的工人有多少人?
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
23.(11分)四边形ABCD为矩形,E是AB延长线上的一点.
(1)若AC=EC,如图1,求证:四边形BECD为平行四边形;
(2)若AB=AD,点F是AB上的点,AF=BE,EG⊥AC于点G,如图2,求证:△DGF是等腰直角三角形.
24.(13分)二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点,连接BP、AC,交于点Q,过点P作PD⊥x轴于点D.
(1)求二次函数的表达式;
(2)连接BC,当∠DPB=2∠BCO时,求直线BP的表达式;
(3)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由.
25.(14分)如图1,O为半圆的圆心,C、D为半圆上的两点,且=.连接AC并延长,与BD的延长线相交于点E.
(1)求证:CD=ED;
(2)AD与OC,BC分别交于点F,H.
①若CF=CH,如图2,求证:CF•AF=FO•AH;
②若圆的半径为2,BD=1,如图3,求AC的值.
2021年山东省泰安市中考数学试卷
参考答案与试题解析
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)
1.下列各数:﹣4,﹣2.8,0,|﹣4|,其中比﹣3小的数是( )
A.﹣4 B.|﹣4| C.0 D.﹣2.8
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【解答】解:∵|﹣4|=4,
∴﹣4<﹣3<﹣2.8<0<|﹣4|,
∴其中比﹣3小的数是﹣4.
故选:A.
2.下列运算正确的是( )
A.2x2+3x3=5x5 B.(﹣2x)3=﹣6x3
C.(x+y)2=x2+y2 D.(3x+2)(2﹣3x)=4﹣9x2
【分析】根据合并同类项,积的乘方,完全平方公式,平方差公式计算即可.
【解答】解:A选项,2x2与3x3不是同类项,不能合并,故该选项计算错误,不符合题意;
B选项,原式=﹣8x3,故该选项计算错误,不符合题意;
C选项,原式=x2+2xy+y2,故该选项计算错误,不符合题意;
D选项,原式=22﹣(3x)2=4﹣9x2,故该选项计算正确,符合题意;
故选:D.
3.如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是( )
A. B. C. D.
【分析】根据从左边看得到的图形是左视图,可得答案.
【解答】解:从左边看从左到右第一列是两个小正方形,第二列有4个个小正方形,第三列有3个小正方形,
故选:B.
4.如图,直线m∥n,三角尺的直角顶点在直线m上,且三角尺的直角被直线m平分,若∠1=60°,则下列结论错误的是( )
A.∠2=75° B.∠3=45° C.∠4=105° D.∠5=130°
【分析】利用平行线的性质、直角的定义、三角形外角的性质即可解决问题.
【解答】解:如图,
∵三角尺的直角被直线m平分,
∴∠6=∠7=45°,
∴∠4=∠1+∠6=45°+60°=105°,
∵m∥n,
∴∠3=∠7=45°,∠2=180°﹣∠4=75°,
∴∠5=180°﹣∠3=180°﹣45°=135°,
故选项A、B、C正确,
故选:D.
5.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为( )
A.7h,7h B.8h,7.5h C.7h,7.5h D.8h,8h
【分析】直接利用众数以及中位数的概念分别分析求出即可.
【解答】解:∵7h出现了19次,出现的次数最多,
∴所调查学生睡眠时间的众数是7h;
∵共有50名学生,中位数是第25、26个数的平均数,
∴所调查学生睡眠时间的中位数是=7.5(h).
故选:C.
6.如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是优弧GE上一点,∠CDE=18°,则∠GFE的度数是( )
A.50° B.48° C.45° D.36°
【分析】连接AD,根据切线的性质得到AD⊥BC,根据垂直的定义得到∠ADB=∠ADC=90°,根据直角三角形的性质得到∠B=30°,根据三角形的内角和定理得到∠GAD=60°,根据等腰三角形的性质得到∠AED=∠ADE=72°,根据圆周角定理即可得到结论。
【解答】解:连接AD,
∵BC与⊙A相切于点D,
∴AD⊥BC,
∴∠ADB=∠ADC=90°,
∵AB=6,AG=AD=3,
∴AD=AB,
∴∠B=30°,
∴∠GAD=60°,
∵∠CDE=18°,
∴∠ADE=90°﹣18°=72°,
∵AD=AE,
∴∠AED=∠ADE=72°,
∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣72°﹣72°=36°,
∴∠BAC=∠BAD+∠CAD=60°+36°=96°,
∴∠GFE=GAE=96°=48°,
故选:B.
7.已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>﹣ B.k< C.k>﹣且k≠0 D.k<且k≠0
【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(2k﹣1)2﹣4k•(k﹣2)>0,然后其出两个不等式的公共部分即可.
【解答】解:根据题意得k≠0且△=(2k﹣1)2﹣4k•(k﹣2)>0,
解得k>﹣且k≠0.
故选:C.
8.将抛物线y=﹣x2﹣2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A.(﹣2,2) B.(﹣1,1) C.(0,6) D.(1,﹣3)
【分析】直接将原函数写成顶点式,再利用二次函数平移规律:左加右减,上加下减,进而得出平移后解析式,再把各选项的点代入判断即可.
【解答】解:y=﹣x2﹣2x+3
=﹣(x2+2x)+3
=﹣[(x+1)2﹣1]+3
=﹣(x+1)2+4,
∵将抛物线y=﹣x2﹣2x+3的图象向右平移1个单位,再向下平移2个单位,
∴得到的抛物线解析式为:y=﹣x2+2,
当x=﹣2时,y=﹣(﹣2)2+2=﹣4+2=﹣2,故(﹣2,2)不在此抛物线上,故A选项不合题意;
当x=﹣1时,y=﹣(﹣1)2+2=﹣1+2=1,故(﹣1,1)在此抛物线上,故B选项符合题意;
当x=0时,y=﹣02+2=0+2=2,故(0,6)不在此抛物线上,故A选项不合题意;
当x=1时,y=﹣12+2=﹣1+2=1,故(1,﹣3)不在此抛物线上,故A选项不合题意;
故选:B.
9.如图,四边形ABCD是⊙O的内接四边形,∠B=90°,∠BCD=120°,AB=2,CD=1,则AD的长为( )
A.2﹣2 B.3﹣ C.4﹣ D.2
【分析】延长AD、BC交于E,先利用直角三角形的性质求得AE的长,然后再求得DE的长,从而求得答案.
【解答】解:延长AD、BC交于E,
∵∠BCD=120°,
∴∠A=60°,
∵∠B=90°,
∴∠ADC=90°,∠E=30°,
在Rt△ABE中,AE=2AB=4,
在Rt△CDE中,DE==,
∴AD=AE﹣DE=4﹣,
故选:C.
10.如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:
①AM=CN;
②若MD=AM,∠A=90°,则BM=CM;
③若MD=2AM,则S△MNC=S△BNE;
④若AB=MN,则△MFN与△DFC全等.
其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【分析】根据平行四边形的性质,证明△MDB≌△NBD,从而判断①正确;若MD=AM,∠A=90°,则平行四边形ABCD为矩形,通过证明△BAM≌△CDM可以判断②;过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,通过三角形面积公式可以判断③;若AB=MN则四边形MNCD是等腰梯形,通过证明△MNC≌△DCN和△MFN≌△DFC即可判断④.
【解答】解:①∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADB=∠CBD,
∵E是BD的中点,
∴BE=DE,
在△MDB和△NBD中,
,
∴△MDB≌△NBD(ASA),
∴DM=BN,
∴AM=CN,
故①正确;
②若MD=AM,∠A=90°,
则平行四边形ABCD为矩形,
∴∠D=∠A=90°,
在△BAM和△CDM中,
,
∴△BAM≌△CDM(SAS),
∴BM=CM,
故②正确;
③过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,
由①可知四边形MBCD是平行四边形,E为BD中点,
∴MG=2EH,
又∵MD=2AM,BN=MD,AM=NC,
∴S△ANC=NC•MG=•BN•2EH=BN•EH=S△BNE,
故③正确;
④∵AB=MN,AB=DC,
∴MN=DC,
∴四边形MNCD是等腰梯形,
∴∠MNC=∠DCN,
在△MNC和△DCN中,
,
∴△MNC≌△DCN(SAS),
∴∠NMC=∠CDN,
在△MFN和△DFC中,
,
∴△MFN≌△DFC(AAS),
故④正确.
∴正确的个数是4个,
故选:D.
11.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)( )
A.136.6米 B.86.7米 C.186.7米 D.86.6米
【分析】作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,在Rt△ADH中求出DH,再在Rt△EFB中求出EF,在Rt△EFC中求出CF即可解决问题.
【解答】解:如图作DH⊥AB于H,延长DE交BC于F.
在Rt△ADH中,AD=130米,DH:AH=1:2.4,
∴DH=50(米),
∵四边形DHBF是矩形,
∴BF=DH=50(米),
在Rt△EFB中,∠BEF=45°,
∴EF=BF=50米,
在Rt△EFC中,FC=EF•tan60°,
∴CF=50×≈86.6(米),
∴BC=BF+CF=136.6(米).
故选:A.
12.如图,在矩形ABCD中,AB=5,BC=5,点P在线段BC上运动(含B、C两点),连接AP,以点A为中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为( )
A. B. C. D.3
【分析】如图,以AB为边向右作等边△ABF,作射线FQ交AD于点E,过点D作DH⊥QE于H.利用全等三角形的性质证明∠AFQ=90°,推出∠AEF=60°,推出点Q的运动轨迹是射线FE,求出DH,可得结论.
【解答】解:如图,以AB为边向右作等边△ABF,作射线FQ交AD于点E,过点D作DH⊥QE于H.
∵四边形ABCD是矩形,
∴∠ABP=∠BAE=90°,
∵△ABF,△APQ都是等边三角形,
∴∠BAF=∠PAQ=60°,BA=FA,PA=QA,
∴∠BAP=∠FAQ,
在△BAP和△FAQ中,
,
∴△BAP≌△FAQ(SAS),
∴∠ABP=∠AFQ=90°,
∵∠FAE=90°﹣60°=30°,
∴∠AEF=90°﹣30°=60°,
∵AB=AF=5,AE=AF÷cos30°=,
∴点Q的运动轨迹是射线FE,
∵AD=BC=5,
∴DE=AD﹣AE=,
∵DH⊥EF,∠DEH=∠AEF=60°,
∴DH=DE•sin60°=×=,
根据垂线段最短可知,当点Q与H重合时,DQ的值最小,最小值为,
故选:A.
二、填空题(本大题共6小题,满分18分。只要求填写最后结果,每小题填对得4分)
13.(3分)2021年5月15日7时18分,天问一号着陆巡视器成功着陆于火星,我国首次火星探测任务着陆火星取得圆满成功.探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 3.2×108 千米.
【分析】把一个大于10的数写成科学记数法形式:a×10n,其中1≤a<10,n为正整数,n的值比这个数的位数少1.
【解答】解:3.2亿=320000000=3.2×108,
故答案为:3.2×108.
14.(3分)《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为 .
【分析】根据乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50和题目中所设的未知数,可以列出相应的方程组,从而可以解答本题.
【解答】解:由题意可得,
,
故答案为:.
15.(3分)如图是抛物线y=ax2+bx+c的部分图象,图象过点(3,0),对称轴为直线x=1,有下列四个结论:①abc>0;②a﹣b+c=0;③y的最大值为3;④方程ax2+bx+c+1=0有实数根.其中正确的为 ②④ (将所有正确结论的序号都填入).
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系;当x=﹣1时,y=a﹣b+c;然后由图象确定当y=﹣1时,x的值有2个.
【解答】解:∵抛物线开口向下,
∴a<0,
∵对称轴x=﹣=1,
∴b=﹣2a>0,
∵抛物线与y轴的交点在y轴正半轴,
∴c>0,
∴abc<0,故①错误;
∵抛物线与x轴的交点(3,0),对称轴为直线x=1,
∴抛物线x轴的另一个交点在(﹣1,0),
∴当x=﹣1时,y=a﹣b+c=0,即②正确;
由图象无法判断y的最大值,故③错误;
方程ax2+bx+c+1=0,可看作二次函数y=ax2+bx+c与y=﹣1的交点个数,
由图象可知,必然有2个交点,即方程ax2+bx+c+1=0有2个不想等的实数根.
故④正确.
故答案为:②④.
16.(3分)若△ABC为直角三角形,AC=BC=4,以BC为直径画半圆如图所示,则阴影部分的面积为 4 .
【分析】连接CD.构建直径所对的圆周角∠BDC=90°,然后利用等腰直角△ABC的性质:斜边上的中线是斜边的一半、中线与垂线重合,求得CD=BD=AD,从而求得弦BD与CD所对的弓形的面积相等,所以图中阴影部分的面积=直角三角形ABC的面积﹣直角三角形BCD的面积.
【解答】解:连接CD.
∵BC是直径,
∴∠BDC=90°,即CD⊥AB;
又∵△ABC为等腰直角三角形,
∴CD是斜边AB的垂直平分线,
∴CD=BD=AD,
∴=,
∴S弓形BD=S弓形CD,
∴S阴影=SRt△ABC﹣SRt△BCD;
∵△ABC为等腰直角三角形,CD是斜边AB的垂直平分线,
∴SRt△ABC=2SRt△BCD;
又SRt△ABC=×4×4=8,
∴S阴影=4;
故答案为:4.
17.(3分)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为 4+2 .
【分析】证明Rt△EBF≌Rt△EB′D(HL),推出BF=DB′,再证明DB′=EC=BF=2,想办法求出AB′,可得结论。
【解答】解:由翻折的性质可知,EB=EB′,∠B=∠AB′E=∠EB′D=90°,
在Rt△EBF和Rt△EB′D中,
,
∴Rt△EBF≌Rt△EB′D(HL),
∴BF=DB′,
∵四边形ABCD是矩形,
∴∠C=∠CDB′=∠EB′D=90°,
∴四边形ECDB′是矩形,
∴DB′=EC=2,
∴BF=EC=2,
由翻折的性质可知,BF=FG=2,∠FAG=45°,∠AGF=∠B=∠AGF=90°,
∴AG=FG=2,
∴AF=2.
∴AB=AB′=2+2,
∴AD=AB′+DB′=4+2,
故答案为:4+2。
18.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形AnBnBn+1∁n的边长为 (结果用含正整数n的代数式表示).
【分析】设直线y=x与x轴夹角为α,过B1作B1H⊥x轴于H,由点B1的横坐标为2,点B1在直线l:y=x上,可得OH=2,B1H=1,OB1==,tanα==,Rt△A1B1O中,求得A1B1=OB1•tanα=,即第1个正方形边长是,在Rt△A2B2O中,求得第2个正方形边长是×,在Rt△A3B3O中,求得第3个正方形边长是×=×()2,在Rt△A4B4O中,求得第4个正方形边长是×=×()3,......观察规律即可得:第n个正方形边长是×()n﹣1.
【解答】解:设直线y=x与x轴夹角为α,过B1作B1H⊥x轴于H,如图:
∵点B1的横坐标为2,点B1在直线l:y=x上,令x=2得y=1,
∴OH=2,B1H=1,OB1==,
∴tanα==,
Rt△A1B1O中,A1B1=OB1•tanα=,即第1个正方形边长是,
∴OB2=OB1+B1B2=+=×3,
Rt△A2B2O中,A2B2=OB2•tanα=×3×=×,即第2个正方形边长是×,
∴OB3=OB2+B2B3=×3+×=×,
Rt△A3B3O中,A3B3=OB3•tanα=××=×,即第3个正方形边长是×=×()2,
∴OB4=OB3+B3B4=×+×=×,
Rt△A4B4O中,A4B4=OB4•tanα==××=×,即第4个正方形边长是×=×()3,
......
观察规律可知:第n个正方形边长是×()n﹣1,
故答案为:×()n﹣1.
三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)
19.(10分)(1)先化简,再求值:,其中a=+3;
(2)解不等式:1﹣.
【分析】(1)分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里面的,然后代入求值;
(2)解一元一次不等式,按照去分母,去括号,移项,合并同类项,系数化1的步骤进行计算求解.
【解答】解:(1)原式=[]
=
=﹣,
当a=+3时,原式=﹣;
(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
20.(10分)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息,解答下列问题:
(1)本次共调查了 50 名学生;C组所在扇形的圆心角为 72 度;
(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?
(3)若E组14名学生中有4人满分,设这4名学生为E1,E2,E3,E4,从其中抽取2名学生代表学校参加上一级比赛,请用列表或画树状图的方法求恰好抽到E1,E2的概率.
竞赛成绩统计表(成绩满分100分)
组别
分数
人数
A组
75<x≤80
4
B组
80<x≤85
C组
85<x≤90
10
D组
90<x≤95
E组
95<x≤100
14
合计
【分析】(1)用A组人数除以它所占的百分比得到本次共调查的总人数;用360°乘以C组人数所占的百分比得到C组的圆心角的度数;
(2)先计算出D组的人数,然后用1600乘以样本中D组和E组人数所占的百分比即可;
(3)画树状图展示所有12种等可能的结果,找出恰好抽到E1,E2的结果数,然后根据概率公式求解。
【解答】解:(1)本次共调查的学生=14÷28%=50(人);
C组的圆心角为360°×=72°,
故答案为50;72;
(2)B组的人数为50×12%=16(人),
则D组的人数为50﹣4﹣6﹣1﹣14=16(人),
则优秀的人数为1600×=960(人);
(3)画树状图为:
共有12种等可能的结果,其中恰好抽到E1,E2的结果数为2,
所以恰好抽到E1,E2的概率==.
21.(10分)如图,点P为函数y=x+1与函数y=(x>0)图象的交点,点P的纵坐标为4,PB⊥x轴,垂足为点B.
(1)求m的值;
(2)点M是函数y=(x>0)图象上一动点,过点M作MD⊥BP于点D,若tan∠PMD=,求点M的坐标.
【分析】(1)根据点P为函数y=x+1图象的点,点P的纵坐标为4,可以求得点P的坐标,进而求得m的值;
(2)设点M的坐标(x,y),分两种情况:点M在点P右侧,点M在点P左侧,根据tan∠PMD=得=,根据点P的坐标求出x、y的值,即可得出答案.
【解答】解:∵点P为函数y=x+1图象的点,点P的纵坐标为4,
∴4=x+1,解得:x=6,
∴点P(6,4),
∵点P为函数y=x+1与函数y=(x>0)图象的交点,
∴4=,
∴m=24;
(2)设点M的坐标(x,y),
∵tan∠PMD=,
∴=,
①点M在点P右侧,如图,
∵点P(6,4),
∴PD=4﹣y,DM=x﹣6,
∴=,
∵xy=m=24,
∴y=,
∴2(4﹣)=x﹣6,解得:x=6或8,
∵点M在点P右侧,
∴x=8,
∴y=3,
∴点M的坐标为(8,3);
②点M在点P左侧,
∵点P(6,4),
∴PD=y﹣4,DM=6﹣x,
∴=,
∵xy=m=24,
∴y=,
∴2(4﹣)=x﹣6,解得:x=6或8,
∵点M在点P左侧,
∴此种情况不存在;
∴点M的坐标为(8,3).
22.(10分)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.
(1)求该厂当前参加生产的工人有多少人?
(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?
【分析】(1)设当前参加生产的工人有x人,根据每人每小时完成的工作量不变,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)利用每人每小时完成的工作量=工作总量÷工作时间÷参与工作的人数,即可求出每人每小时完成的工作量,设还需要生产y天才能完成任务,根据工作总量=工作效率×工作时间×工作人数,即可得出关于y的方程求解.
【解答】解:(1)设当前参加生产的工人有x人,由题意可得:
,
解得:x=30,
经检验:x=30是原分式方程的解,且符合题意,
∴当前参加生产的工人有30人;
(2)每人每小时完成的数量为:16÷8÷40=0.05(万剂),
设还需要生产y天才能完成任务,由题意可得:
4×15+(30+10)×10×0.05y=760,
解得:y=35,
35+4=39(天),
∴该厂共需要39天才能完成任务.
23.(11分)四边形ABCD为矩形,E是AB延长线上的一点.
(1)若AC=EC,如图1,求证:四边形BECD为平行四边形;
(2)若AB=AD,点F是AB上的点,AF=BE,EG⊥AC于点G,如图2,求证:△DGF是等腰直角三角形.
【分析】(1)先根据四边形ABCD为矩形,CB⊥AE,AC=EC得出AB=BE即可;
(2)由AB=AD得出矩形ABCD是正方形,得出∠E=∠GAE=45°,然后证明△EGF≌△AGD,再得出∠DGF=90°,GF=GD,∠DGA=∠FGE,从而得出结论.
【解答】证明:(1)∵四边形ABCD为矩形,
∴AB∥CD,AB=CD,CB⊥AE,
又∵AC=EC,
∴AB=BE,
∴BE=CD,BE∥CD,
∴四边形BECD为平行四边形;
(2)∵AB=AD,
∴矩形ABCD是正方形,
∵EG⊥AC,
∴∠E=∠GAE=45°,
∴GE=GA,
又∵AF=BE,
∴AB=FE,
∴FE=AD,
在△EGF和△AGD中,
,
∴△EGF≌△AGD(SAS),
∴GF=GD,∠DGA=∠FGE,
∠DGF=∠DGA+∠AGF=∠EGF+∠AGF=∠AGE=90°,
∴△DGF是等腰直角三角形.
24.(13分)二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点,连接BP、AC,交于点Q,过点P作PD⊥x轴于点D.
(1)求二次函数的表达式;
(2)连接BC,当∠DPB=2∠BCO时,求直线BP的表达式;
(3)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由.
【分析】(1)利用待定系数法即可求出答案;
(2)设BP与y轴交于点E,设OE=a,则CE=4﹣a,BE=4﹣a,运用勾股定理可求得a=,得出E(0,),再利用待定系数法即可求出答案;
(3)设PD与AC交于点N,过点B作y轴的平行线与AC相交于点M,利用待定系数法求出直线AC表达式,再利用BM∥PN,可得△PNQ∽△BMQ,进而得出==,设P(a0,﹣a02﹣3a0+4)(﹣4<a0<0),则N(a0,a0+4),从而得到=,利用二次函数的性质即可求得答案.
【解答】解:(1)∵二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),
∴,
解得:,
∴该二次函数的表达式为y=﹣x2﹣3x+4;
(2)如图,设BP与y轴交于点E,
∵PD∥y轴,
∴∠DPB=∠OEB,
∵∠DPB=2∠BCO,
∴∠OEB=2∠BCO,
∴∠ECB=∠EBC,
∴BE=CE,
设OE=a,则CE=4﹣a,
∴BE=4﹣a,
在Rt△BOE中,由勾股定理得:BE2=OE2+OB2,
∴(4﹣a)2=a2+12,
解得:a=,
∴E(0,),
设BE所在直线表达式为y=kx+e(k≠0),
∴,
解得:,
∴直线BP的表达式为y=﹣x+;
(3)有最大值.
如图,设PD与AC交于点N,
过点B作y轴的平行线与AC相交于点M,
设直线AC表达式为y=mx+n,
∵A(﹣4,0),C(0,4),
∴,
解得:,
∴直线AC表达式为y=x+4,
∴M点的坐标为(1,5),
∴BM=5,
∵BM∥PN,