分享
湖北十堰-word解析.doc
下载文档

ID:3180368

大小:2.22MB

页数:28页

格式:DOC

时间:2024-01-29

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
湖北 十堰 word 解析
2020年十堰市初中毕业生学业水平考试 数学试题 一、选择题(本题有10个小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内. 1.的倒数是( ) A. 4 B. C. D. 【答案】A 【解析】 【分析】 根据倒数的概念进行求解即可. 【详解】 的倒数是4 故选:A 【点睛】本题考查了倒数的概念,熟知两个数互为倒数,其积为1是解题的关键. 2.某几何体的三视图如图所示,则此几何体是( ) A. 圆锥 B. 圆柱 C. 长方体 D. 四棱柱 【答案】B 【解析】 【详解】解:圆柱体的主视图、左视图、右视图,都是长方形(或正方形),俯视图是圆, 故选:B. 【点睛】本题考查三视图. 3.如图,将一副三角板重叠放在起,使直角顶点重合于点O.若,则( ) A. B. C. D. 【答案】C 【解析】 【分析】 根据角的和差关系求解即可. 【详解】解:∵, ∴, ∴, 故选:C. 【点睛】本题考查角度的计算问题.弄清角与角之间的关系是解题的关键. 4.下列计算正确的是( ) A. B. C. D. 【答案】D 【解析】 【分析】 根据整式的混合运算法则即可求解. 【详解】A.不能计算,故错误; B. ,故错误; C. ,故错误; D.,正确, 故选D. 【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则. 5.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示: 鞋的尺码/ 22 22.5 23 23.5 24 24.5 25 销售量双 1 2 5 11 7 3 1 若每双鞋的销售利润相同,则该店主最应关注的销售数据是下列统计量中的( ) A. 平均数 B. 方差 C. 众数 D. 中位数 【答案】C 【解析】 【分析】 根据题意,联系商家最关注的应该是最畅销的鞋码,则考虑该店主最应关注的销售数据是众数. 【详解】因为众数是在一组数据中出现次数最多的数, 又根据题意,每双鞋的销售利润相同,鞋店为销售额考虑,应关注卖出最多的鞋子的尺码,这样可以确定进货的数量, 所以该店主最应关注的销售数据是众数. 故选:C. 【点睛】本题主要考查数据的收集和处理.解题关键是熟悉统计数据的意义,并结合实际情况进行分析.根据众数是在一组数据中出现次数最多的数,再联系商家最关注的应该是最畅销的鞋码,则考虑该店主最应关注的销售数据是众数. 6.已知中,下列条件:①;②;③;④平分,其中能说明是矩形的是( ) A. ① B. ② C. ③ D. ④ 【答案】B 【解析】 【分析】 根据矩形的判定进行分析即可. 【详解】A. ,邻边相等的平行四边形是菱形,故A错误; B. ,对角线相等的平行四边形是矩形,故B正确; C. ,对角线互相垂直的平行四边形是菱形,故C错误; D. 平分,对角线平分其每一组对角的平行四边形是菱形,故D错误. 故选:B. 【点睛】本题考查了矩形的判定,熟知矩形从边,角,对角线三个方向的判定是解题的关键. 7.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务若设原计划每周生产x万个口罩,则可列方程为( ) A. B. C D. 【答案】A 【解析】 【分析】 根据第一周之后,按原计划的生产时间=提速后生产时间+1,可得结果. 【详解】由题知: 故选:A. 【点睛】本题考查了分式方程的实际应用问题,根据题意列出方程式即可. 8.如图,点在上,,垂足为E.若,,则( ) A. 2 B. 4 C. D. 【答案】D 【解析】 【分析】 连接OC,根据圆周角定理求得,在中可得,可得OC的长度,故CE长度可求得,即可求解. 【详解】解:连接OC, ∵, ∴, 在中,, ∴, ∴ ∵, ∴, ∴ ∵,垂足E, ∴, 故选:D. 【点睛】本题考查圆周角定理和垂径定理,作出合适的辅助线是解题的关键. 9.根据图中数字的规律,若第n个图中出现数字396,则( ) A. 17 B. 18 C. 19 D. 20 【答案】B 【解析】 【分析】 观察上三角形,下左三角形,下中三角形,下右三角形各自的规律,让其等于396,解得为正整数即成立,否则舍去. 【详解】根据图形规律可得: 上三角形的数据的规律为:,若,解得不为正整数,舍去; 下左三角形的数据的规律为:,若,解得不为正整数,舍去; 下中三角形的数据的规律为:,若,解得不为正整数,舍去; 下右三角形的数据的规律为:,若,解得,或,舍去 故选:B. 【点睛】本题考查了有关数字的规律,能准确观察到相关规律是解题的关键. 10.如图,菱形的顶点分别在反比例函数和的图象上,若,则( ) A. B. 3 C. D. 【答案】B 【解析】 【分析】 据对称性可知,反比例函数,的图象是中心对称图形,菱形是中心对称图形,推出菱形ABCD的对角线AC与BD的交点即为原点O.如图:作CM⊥x轴于M,DN⊥x轴于N.连接OD,OC.证明,利用相似三角形的性质可得答案. 【详解】解:根据对称性可知,反比例函数,的图象是中心对称图形, 菱形是中心对称图形, ∴菱形ABCD的对角线AC与BD的交点即为原点O, 如图:作CM⊥x轴于M,DN⊥x轴于N.连接OD,OC. ∵DO⊥OC, ∴∠COM+∠DON=90°,∠DON+∠ODN=90°, ∴∠COM=∠ODN, ∵∠CMO=∠DNO=90°, ∴, 菱形ABCD的对角线AC与BD的交点即为原点O,, 故选B. 【点睛】本题考查反比例函数的图象与性质、菱形的性质、相似三角形的判定与性质,锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题. 二、填空题(本题有6个小题,每小题3分,共18分) 11.已知,则______. 【答案】7 【解析】 【分析】 由可得到,然后整体代入计算即可. 【详解】解:∵, ∴, ∴, 故答案为:7. 【点睛】本题考查了代数式的求值问题,注意整体代入的思想是解题的关键. 12.如图,在中,是的垂直平分线.若,的周长为13,则的周长为______. 【答案】 【解析】 【分析】 由线段的垂直平分线的性质可得,从而可得答案. 【详解】解: 是的垂直平分线., 的周长 故答案为: 【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键. 13.某校即将举行30周年校庆,拟定了四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如下两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为______. 【答案】1800 【解析】 【分析】 根据条形统计图和扇形统计图可知赞成C方案的有44人,占样本的,可得出样本容量,即可得到赞成方案B的人数占比,用样本估计总体即可求解. 【详解】解:根据条形统计图和扇形统计图可知赞成C方案的有44人,占样本的, ∴样本容量为:(人), ∴赞成方案B的人数占比为:, ∴该校学生赞成方案B的人数为:(人), 故答案为:1800. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键. 14.对于实数,定义运算.若,则_____. 【答案】 【解析】 【分析】 根据给出的新定义分别求出与的值,根据得出关于a的一元一次方程,求解即可. 【详解】解:∵, ∴,, ∵, ∴,解得, 故答案为:. 【点睛】本题考查解一元一次方程、新定义下实数的运算等内容,理解题干中给出的新定义是解题的关键. 15.如图,圆心角为的扇形内,以为直径作半圆,连接.若阴影部分的面积为,则______. 【答案】2 【解析】 【分析】 本题可利用扇形面积公式以及三角形面积公式,用大扇形面积减去空白部分面积求得阴影部分面积,继而根据已知列方程求解. 【详解】将原图区域划分为四部分,阴影部分分别为S1,S2;两块空白分别为S3,S4,连接DC,如下图所示: 由已知得:三角形ABC为等腰直角三角形,S1+ S2=π-1, ∵BC为直径, ∴∠CDB=90°,即CD⊥AB, 故CD=DB=DA, ∴D点为 中点,由对称性可知与弦CD围成的面积与S3相等. 设AC=BC=x, 则, 其中 ,, 故:, 求解得:(舍去) 故答案:2. 【点睛】本题考查几何图形面积的求法,常用割补法配合扇形面积公式以及三角形面积公式求解. 16.如图,D是等边三角形外一点.若,连接,则的最大值与最小值的差为_____. 【答案】12 【解析】 【分析】 以CD为边向外作等边三角形CDE,连接BE,可证得△ECB≌△DCA从而得到BE=AD,再根据三角形的三边关系即可得出结论. 【详解】解:如图1,以CD为边向外作等边三角形CDE,连接BE, ∵CE=CD,CB=CA,∠ECD=∠BCA=60°, ∴∠ECB=∠DCA, ∴△ECB≌△DCA(SAS), ∴BE=AD, ∵DE=CD=6,BD=8, ∴8-6<BE<8+6, ∴2<BE<14, ∴2<AD<14. ∴则的最大值与最小值的差为12. 故答案为:12 【点睛】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD转化为BE从而求解,是一道较好的中考题. 三、解答题(本题有9个小题,共72分) 17.计算:. 【答案】1 【解析】 【分析】 根据负整数指数幂,绝对值的运算,0次幂分别计算出每一项,再计算即可. 【详解】解: . 【点睛】本题考查负整数指数幂,绝对值的运算,0次幂,熟练掌握运算法则是解题的关键. 18.先化简,再求值:,其中. 【答案】,. 【解析】 【分析】 利用完全平方公式、平方差公式和通分等方法将原分式化简成,再将a、b值代入化简后的分式中即可得出结论. 详解】解:原式 , 当时,原式. 【点睛】本题考查分式的化简求值,掌握分式的运算法则是解题的关键. 19.如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角一般要满足,现有一架长为的梯子,当梯子底端离墙面时,此时人是否能够安全使用这架梯子(参考数据:,)? 【答案】当梯子底端离墙面时,此时人能够安全使用这架梯子. 【解析】 【分析】 分别求出当时和当时梯子底端与墙面的距离AC的长度,再进行判断即可. 【详解】解:当时,,解得; 当时,,解得; 所以要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子底端与墙面的距离应该在之间,故当梯子底端离墙面时,此时人能够安全使用这架梯子. 【点睛】本题考查解直角三角形的应用,求出人能够安全使用这架梯子时,梯子底端与墙面的安全距离的范围是解题的关键. 20.某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同. (1)小文诵读《长征》的概率是_____; (2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率. 【答案】(1);(2) 【解析】 【分析】 (1)根据概率公式即可求解; (2)根据题意画出树状图,利用概率公式即可求解. 【详解】(1)P(小文诵读《长征》)= ; 故答案为:; (2)依题意画出树状图如下: 故P(小文和小明诵读同一种读本)=. 【点睛】此题主要考查概率的求解,解题的关键是根据题意画出树状图. 21.已知关于x的一元二次方程有两个实数根. (1)求k的取值范围; (2)若,求k的值. 【答案】(1) ;(2) 【解析】 【分析】 (1)根据建立不等式即可求解; (2)先提取公因式对等式变形为,再结合韦达定理求解即可. 【详解】解:(1)由题意可知,, 整理得:, 解得:, ∴的取值范围是:. 故答案为:. (2)由题意得:, 由韦达定理可知:,, 故有:, 整理得:, 解得:, 又由(1)中可知, ∴的值为. 故答案为:. 【点睛】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程没有实数根. 22.如图,为半圆O的直径,C为半圆O上一点,与过点C的切线垂直,垂足为D,交半圆O于点E. (1)求证:平分; (2)若,试判断以为顶点的四边形的形状,并说明理由. 【答案】(1)见解析;(2)菱形,证明过程见解析 【解析】 【分析】 (1)连接OC,由切线的性质可知∠COD=∠D=180°,进而得到OC∥AD,得到∠DAC=∠ACO,再由OC=OA得到∠ACO=∠OAC,进而得到∠DAC=∠OAC即可证明; (2) 连接EC、BC、EO,过C点作CH⊥AB于H点,先证明∠DCE=∠CAE,进而得到△DCE∽△DAC,再由AE=2DE结合三角函数求出∠EAC=30°,最后证明△EAO和△ECO均为等边三角形即可求解. 【详解】解:(1)证明:连接OC,如下图所示: ∵CD为圆O的切线,∴∠OCD=90°, ∴∠D+∠OCD=180°, ∴OC∥AD, ∴∠DAC=∠ACO, 又OC=OA, ∴∠ACO=∠OAC, ∴∠DAC=∠OAC, ∴ AC平分∠DAB. (2) 四边形EAOC为菱形,理由如下: 连接EC、BC、EO,过C点作CH⊥AB于H点,如下图所示, 由圆内接四边形对角互补可知,∠B+∠AEC=180°, 又∠AEC+∠DEC=180°, ∴∠DEC=∠B, 又∠B+∠CAB=90°, ∠DEC+∠DCE=90°, ∴∠CAB=∠DCE, 又∠CAB=∠CAE, ∴∠DCE=∠CAE,且∠D=∠D, ∴△DCE∽△DAC, 设DE=x,则AE=2x,AD=AE+DE=3x, ∴,∴, ∴, 在Rt△ACD中,, ∴∠DAC=30°, ∴∠DAO=2∠DAC=60°,且OA=OE, ∴△OAE为等边三角形, 由同弧所对的圆周角等于圆心角的一半可知:∠EOC=2∠EAC=60°, ∴△EOC为等边三角形, ∴EA=AO=OE=EC=CO, 即EA=AO=OC=CE, ∴四边形EAOC为菱形. 【点睛】本题考查了圆周角定理、相似三角形的判定和性质、三角函数、菱形的判定等知识点,属于综合题,熟练掌握其性质和定理是解决本题的关键. 23.某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元台),m与x的关系如图所示. (1)若第x天可以生产这种设备y台,则y与x的函数关系式为______,x的取值范围为______; (2)第几天时,该企业当天的销售利润最大?最大利润为多少? (3)求当天销售利润低于10800元的天数. 【答案】(1); (2)第6天时,该企业利润最大,为12800元. (3)7天 【解析】 【分析】 (1)根据题意确定一次函数的解析式,实际问题中x的取值范围要使实际问题有意义; (2)求出当天利润与天数的函数解析式,确定其最大值即可; (3)根据(2)中的函数解析式列出不等式方程即可解答. 【详解】(1)根据题意,得y与x的解析式为:() (2)设当天的当天的销售利润为w元,则根据题意,得 当1≤x≤6时, w=(1200-800)(2x+20)=800x+8000, ∵800>0,∴w随x的增大而增大, ∴当x=6时,w最大值=800×6+8000=12800. 当6<x≤12时, 易得m与x的关系式:m=50x+500 w=[1200-(50x+500)]×(2x+20) =-100x2+400x+14000=-100(x-2)2+14400. ∵此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数, ∴当x=7时,w有最大值,为11900元, ∵12800>11900, ∴当x=6时,w最大,且w最大值=12800元, 答:该厂第6天获得的利润最大,最大利润是12800元. (3)由(2)可得, 1≤x≤6时, 解得:x<3.5 则第1-3天当天利润低于10800元, 当6<x≤12时, 解得x<-4(舍去)或x>8 则第9-12天当天利润低于10800元, 故当天销售利润低于10800元的天数有7天. 【点睛】本题主要考查一次函数和二次函数应用,解题关键在于理解题意,利用待定系数法确定函数的解析式,并分类讨论. 24.如图1,已知,,点D在上,连接并延长交于点F. (1)猜想:线段与的数量关系为_____; (2)探究:若将图1的绕点B顺时针方向旋转,当小于时,得到图2,连接并延长交于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由; (3)拓展:图1中,过点E作,垂足为点G.当的大小发生变化,其它条件不变时,若,,直接写出的长. 【答案】(1)AF=EF;(2)成立,理由见解析;(3)12 【解析】 【分析】 (1) 延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF; (2)证明原理同(1),延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF; (3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解. 【详解】解:(1)延长DF到G点,并使FG=DC,连接GE,如下图所示 ∵, ∴DE=AC,BD=BC, ∴∠CDB=∠DCB,且∠CDB=∠ADF, ∴∠ADF=∠DCB, ∵∠ACB=90°, ∴∠ACD+∠DCB=90°, ∵∠EDB=90°, ∴∠ADF+∠FDE=90°, ∴∠ACD=∠FDE, 又延长DF使得FG=DC, ∴FG+DF=DC+DF, ∴DG=CF, 在△ACF和△EDG中, , ∴△ACF△EDG(SAS), ∴GE=AF,∠G=∠AFC, 又∠AFC=∠GFE, ∴∠G=∠GFE ∴GE=EF ∴AF=EF, 故AF与EF的数量关系为:AF=EF. 故答案为:AF=EF; (2)仍旧成立,理由如下: 延长DF到G点,并使FG=DC,连接GE,如下图所示 设BD延长线DM交AE于M点, ∵, ∴DE=AC,BD=BC, ∴∠CDB=∠DCB,且∠CDB=∠MDF, ∴∠MDF=∠DCB, ∵∠ACB=90°, ∴∠ACD+∠DCB=90°, ∵∠EDB=90°, ∴∠MDF+∠FDE=90°, ∴∠ACD=∠FDE, 又延长DF使得FG=DC, ∴FG+DF=DC+DF, ∴DG=CF, 在△ACF和△EDG中, , ∴△ACF△EDG(SAS), ∴GE=AF,∠G=∠AFC, 又∠AFC=∠GFE, ∴∠G=∠GFE ∴GE=EF, ∴AF=EF, 故AF与EF的数量关系为:AF=EF. 故答案为:AF=EF; (3)如下图所示: ∵BA=BE, ∴∠BAE=∠BEA, ∵∠BAE=∠EBG, ∴∠BEA=∠EBG, ∴AECG, ∴∠AEG+∠G=180°, ∴∠AEG=90°, ∴∠ACG=∠G=∠AEG=90°, ∴四边形AEGC为矩形, ∴AC=EG,且AB=BE, ∴Rt△ACBRt△EGB(HL), ∴BG=BC=6,∠ABC=∠EBG, 又∵ED=AC=EG,且EB=EB, ∴Rt△EDBRt△EGB(HL), ∴DB=GB=6,∠EBG=∠ABE, ∴∠ABC=∠ABE=∠EBG=60°, ∴∠BAC=30°, ∴在Rt△ABC中由30°所对的直角边等于斜边的一半可知: . 故答案为:. 【点睛】本题属于四边形的综合题,考查了三角形全等的性质和判定,矩形的性质和判定,本题的关键是延长DF到G点并使FG=DC,进而构造全等,本题难度稍大,需要作出合适的辅助线. 25.已知抛物线过点和,与x轴交于另一点B,顶点为D. (1)求抛物线的解析式,并写出D点的坐标; (2)如图1,E为线段上方的抛物线上一点,,垂足为F,轴,垂足为M,交于点G.当时,求的面积; (3)如图2,与的延长线交于点H,在x轴上方的抛物线上是否存在点P,使?若存在,求出点P的坐标:若不存在,请说明理由. 【答案】(1),;(2);(3)存在,, 【解析】 【分析】 (1)利用待定系数法求出a的值即可得到解析式,进而得到顶点D坐标; (2)先求出BC的解析式,再设直线EF的解析式为,设点E的坐标为,联立方程求出点F,G的坐标,根据列出关于m的方程并求解,然后求得G的坐标,再利用三角形面积公式求解即可; (3)过点A作AN⊥HB,先求得直线BD,AN的解析式,得到H,N的坐标,进而得到,设点,过点P作PRx轴于点R,在x轴上作点S使得RS=PR,证明,根据相似三角形对应边成比例得到关于n的方程,求得后即可得到点P的坐标. 【详解】(1)把点A(-1,0),C(0,3)代入中, , 解得, , 当时,y=4, (2) 令或x=3 设BC的解析式为 将点代入,得 , 解得, 设直线EF的解析式为,设点E的坐标为, 将点E坐标代入中,得, 把x=m代入 即 解得m=2或m=-3 ∵点E是BC上方抛物线上的点 ∴m=-3舍去 ∴点 (3)过点A作AN⊥HB, ∵点 ∵点,点 设,把(-1,0)代入,得b= 设点 过点P作PR⊥x轴于点R,在x轴上作点S使得RS=PR 且点S的坐标为 若 在和中, 或 【点睛】本题考查的是二次函数的综合,涉及到的知识点较多,运算较复杂,第3问的解题关键在于添加适当的辅助线,利用数形结合的思想列出方程求解.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开