2021
四川省
南充市
中考
数学试卷
2021年四川省南充市中考数学试卷
一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.
1.(4分)满足x≤3的最大整数x是( )
A.1 B.2 C.3 D.4
2.(4分)数轴上表示数m和m+2的点到原点的距离相等,则m为( )
A.﹣2 B.2 C.1 D.﹣1
3.(4分)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是( )
A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF
4.(4分)据统计,某班7个学习小组上周参加“青年大学习”的人数分别为:5,5,6,6,6,7,7.下列说法错误的是( )
A.该组数据的中位数是6 B.该组数据的众数是6
C.该组数据的平均数是6 D.该组数据的方差是6
5.(4分)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )
A.10x+5(x﹣1)=70 B.10x+5(x+1)=70
C.10(x﹣1)+5x=70 D.10(x+1)+5x=70
6.(4分)下列运算正确的是( )
A.•= B.÷=
C.+= D.﹣=
7.(4分)如图,AB是⊙O的直径,弦CD⊥AB于点E,CD=2OE,则∠BCD的度数为( )
A.15° B.22.5° C.30° D.45°
8.(4分)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )
A. B.2 C.+1 D.2﹣1
9.(4分)已知方程x2﹣2021x+1=0的两根分别为x1,x2,则x12﹣的值为( )
A.1 B.﹣1 C.2021 D.﹣2021
10.(4分)如图,在矩形ABCD中,AB=15,BC=20,把边AB沿对角线BD平移,点A′,B′分别对应点A,B给出下列结论:
①顺次连接点A′,B′,C,D的图形是平行四边形;
②点C到它关于直线AA′的对称点的距离为48;
③A′C﹣B′C的最大值为15;
④A′C+B′C的最小值为9.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.
11.(4分)如果x2=4,则x= .
12.(4分)在﹣2,﹣1,1,2这四个数中随机取出一个数,其倒数等于本身的概率是 .
13.(4分)如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=3,则GH的长为 .
14.(4分)若=3,则+= .
15.(4分)如图,在△ABC中,D为BC上一点,BC=AB=3BD,则AD:AC的值为 .
16.(4分)关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:
①当a<0时,抛物线与直线y=2x+2没有交点;
②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;
③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.
其中正确结论的序号是 .
三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤。
17.(8分)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.
18.(8分)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:AF=BE.
19.(8分)某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.
(1)求考生小红和小强自选项目相同的概率;
(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:
考生
自选项目
长跑
掷实心球
小红
95
90
95
小强
90
95
95
①补全条形统计图.
②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),分别计算小红和小强的体育中考成绩.
20.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:无论k取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为x1,x2,且k与都为整数,求k所有可能的值.
21.(10分)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.
(1)求直线AB和反比例函数的解析式;
(2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求△BCE的面积.
22.(10分)如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC=OB,连接AC.
(1)求证:AC是⊙O的切线;
(2)点D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF的长.
23.(10分)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
(1)求苹果的进价;
(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;
(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=﹣x+12.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入﹣购进支出)
24.(10分)如图,点E在正方形ABCD边AD上,点F是线段AB上的动点(不与点A重合),DF交AC于点G,GH⊥AD于点H,AB=1,DE=.
(1)求tan∠ACE;
(2)设AF=x,GH=y,试探究y与x的函数关系式(写出x的取值范围);
(3)当∠ADF=∠ACE时,判断EG与AC的位置关系并说明理由.
25.(12分)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.
(1)求抛物线的解析式;
(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;
(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
2021年四川省南充市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.
1.(4分)满足x≤3的最大整数x是( )
A.1 B.2 C.3 D.4
【解答】解:满足x≤3的最大整数x是3,
故选:C.
2.(4分)数轴上表示数m和m+2的点到原点的距离相等,则m为( )
A.﹣2 B.2 C.1 D.﹣1
【解答】解:由题意得:|m|=|m+2|,
∴m=m+2或m=﹣(m+2),
∴m=﹣1.
故选:C.
3.(4分)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是( )
A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF
【解答】解:∵▱ABCD的对角线AC,BD交于点O,
∴AO=CO,BO=DO,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF,AE=CF,∠CFE=∠AEF,
又∵∠DOC=∠BOA,
∴选项A正确,选项B、C、D不正确,
故选:A.
4.(4分)据统计,某班7个学习小组上周参加“青年大学习”的人数分别为:5,5,6,6,6,7,7.下列说法错误的是( )
A.该组数据的中位数是6 B.该组数据的众数是6
C.该组数据的平均数是6 D.该组数据的方差是6
【解答】解:A、把这些数从小到大排列为:5,5,6,6,6,7,7.则中位数是6,故本选项说法正确,不符合题意;
B、∵6出现了3次,出现的次数最多,
∴众数是6,故本选项说法正确,不符合题意;
C、平均数是(5+5+6+6+6+7+7)÷7=6,故本选项说法正确,不符合题意;
D、方差为:×[(5﹣6)2+2×(5﹣6)2+(6﹣6)2+(6﹣6)2+(6﹣6)2+(7﹣6)2+(7﹣6)2]=,故本选项说法错误,符合题意;
故选:D.
5.(4分)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x元,则可列方程为( )
A.10x+5(x﹣1)=70 B.10x+5(x+1)=70
C.10(x﹣1)+5x=70 D.10(x+1)+5x=70
【解答】解:设每个肉粽x元,则每个素粽(x﹣1)元,
依题意得:10x+5(x﹣1)=70.
故选:A.
6.(4分)下列运算正确的是( )
A.•= B.÷=
C.+= D.﹣=
【解答】解:=,故选项A错误;
==,故选项B错误;
==,故选项C错误;
===,故选项D正确;
故选:D.
7.(4分)如图,AB是⊙O的直径,弦CD⊥AB于点E,CD=2OE,则∠BCD的度数为( )
A.15° B.22.5° C.30° D.45°
【解答】解:∵AB是⊙O的直径,弦CD⊥AB于点E,
∴CD=2ED=2CE,
∵CD=2OE,
∴DE=OE,
∵CD⊥AB,
∴∠DOE=∠ODE=45°,
∴∠BCD=∠DOE=22.5°.
故选:B.
8.(4分)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )
A. B.2 C.+1 D.2﹣1
【解答】解:如图,连结BD,作DH⊥AB,垂足为H,
∵四边形ABCD是菱形,
∴AB=AD,AD∥BC,
∵∠A=60°,
∴△ABD是等边三角形,∠ABC=180°﹣∠A=120°,
∴AD=BD,∠ABD=∠A=∠ADB=60°,
∴∠DBC=∠ABC﹣∠ABD=120°﹣60°=60°,
∵AE=BF,
∴△ADE≌△BDF(SAS),
∴DE=DF,∠FDB=∠ADE,
∴∠EDF=∠EDB+∠FDB=∠EDB+∠ADE=∠ADB=60°,
∴△DEF是等边三角形,
∵△DEF的周长是3,
∴DE=,
设AH=x,则HE=2﹣x,
∵AD=BD,DH⊥AB,
∴∠ADH=∠ADB=30°,
∴AD=2x,DH=x,
在Rt△DHE中,DH²+HE²=DE²,
∴(x)²+(2﹣x)²=()²,
解得:x=(负值舍去),
∴AD=2x=1+,
故选:C.
9.(4分)已知方程x2﹣2021x+1=0的两根分别为x1,x2,则x12﹣的值为( )
A.1 B.﹣1 C.2021 D.﹣2021
【解答】解:∵方程x2﹣2021x+1=0的两根分别为x1,x2,
∴x1+x2=2021,x12﹣2021x1+1=0,x22﹣2021x2+1=0,
∵x2≠0,
∴x2﹣2021+=0,
∴﹣=x2﹣2021,
∴﹣,
∴x12﹣=2021x1﹣1+2021x2﹣20212
=2021(x1+x2)﹣1+20212
=20212﹣1﹣20212
=﹣1.
故选:B.
10.(4分)如图,在矩形ABCD中,AB=15,BC=20,把边AB沿对角线BD平移,点A′,B′分别对应点A,B给出下列结论:
①顺次连接点A′,B′,C,D的图形是平行四边形;
②点C到它关于直线AA′的对称点的距离为48;
③A′C﹣B′C的最大值为15;
④A′C+B′C的最小值为9.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【解答】解:如图1中,∵AB=A′B′,AB∥A′B′,AB=CD,AB∥CD,
∴A′B′=CD,A′B′∥CD,
∴四边形A′B′CD是平行四边形,故①正确,
作点C关于直线AA′的对称点E,连接CE交AA′于T,交BD于点O,则CE=4OC.
∵四边形ABCD是矩形,
∴∠BCD=90°,CD=AB=15,
∴BD===25,
∵•BD•CO=•BC•CD,
∴OC==12,
∴EC=48,故②正确,
∵A′C﹣B′C≤A′B′,
∴A′C﹣B′C≤15,
∴A′C﹣B′C的最大值为15,故③正确,
如图2中,∵B′C=A′D,
∴A′C+B′C=A′C+A′D,
作点D关于AA′的对称点D′,连接DD′交AA′于J,过点D′作D′E⊥CD交CD的延长线于E,连接CD′交AA′于A′,此时CB′+CA′的值最小,最小值=CD′,
由△AJD∽△DAB,可得=,
∴=,
∴DJ=12,
∴DD′=24,
由△DEE′∽△DAB,可得==,
∴==,
∴ED′=,DE=,
∴CE=CD+DE=15+=,
∴CD′===9,
∴A′C+B′C的最小值为9.故④正确,
故选:D.
二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.
11.(4分)如果x2=4,则x= ±2 .
【解答】解:x2=4,
开平方得x=±2;
故答案为:±2.
12.(4分)在﹣2,﹣1,1,2这四个数中随机取出一个数,其倒数等于本身的概率是 .
【解答】解:在﹣2,﹣1,1,2这四个数中,其倒数等于本身的有﹣1和1这两个数,
所以四个数中随机取出一个数,其倒数等于本身的概率是=,
故答案为:.
13.(4分)如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=3,则GH的长为 3 .
【解答】解:在矩形ABCD中,∠BAD=90°,
∵F为BE的中点,AF=3,
∴BE=2AF=6.
∵G,H分别为BC,EC的中点,
∴GH=BE=3,
故答案为3.
14.(4分)若=3,则+= .
【解答】解:∵,
∴n=2m,
∴+=+=+4=,
故答案为:.
15.(4分)如图,在△ABC中,D为BC上一点,BC=AB=3BD,则AD:AC的值为 .
【解答】解:∵BC=AB=3BD,
∴,
∵∠B=∠B,
∴△ABC∽△DBA,
∴,
∴AD:AC=,
故答案为:.
16.(4分)关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:
①当a<0时,抛物线与直线y=2x+2没有交点;
②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;
③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.
其中正确结论的序号是 ②③ .
【解答】解:由,消去y得到,ax2﹣4x﹣1=0,
∵△=16+4a,a<0,
∴△的值可能大于0,
∴抛物线与直线y=2x+2可能有交点,故①错误.
∵抛物线与x轴有两个交点,
∴△=4﹣4a>0,
∴a<1,
∵抛物线经过(0,1),且x=1时,y=a﹣1<0,
∴抛物线与x轴的交点一定在(0,0)与(1,0)之间.故②正确,
∵抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),
∴﹣>0,
∴a>0,
∴1>≥0,
解得,a≥1,故③正确,
故答案为:②③.
三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤。
17.(8分)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.
【解答】解:原式=4x2﹣1﹣(4x2﹣12x+9)
=4x2﹣1﹣4x2+12x﹣9
=12x﹣10.
∵x=﹣1,
∴12x﹣10=12×(﹣1)﹣10=﹣22.
故答案为:12x﹣10,﹣22.
18.(8分)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:AF=BE.
【解答】证明:∵∠BAC=90°,
∴∠BAE+∠FAC=90°,
∵BE⊥AD,CF⊥AD,
∴∠BEA=∠AFC=90°,
∴∠BAE+∠EBA=90°,
∴∠EBA=∠FAC,
在△ACF和△BAE中,
,
∴△ACF≌△BAE(AAS),
∴AF=BE.
19.(8分)某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.
(1)求考生小红和小强自选项目相同的概率;
(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:
考生
自选项目
长跑
掷实心球
小红
95
90
95
小强
90
95
95
①补全条形统计图.
②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),分别计算小红和小强的体育中考成绩.
【解答】解:(1)将乒乓球、篮球和羽毛球分别记作A、B、C,列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由表可知共有9种等可能结果,其中小红和小强自选项目相同的有3种结果,
所以小红和小强自选项目相同的概率为=;
(2)①补全条形统计图如下:
②小红的体育中考成绩为95×50%+90×30%+95×20%=93.5(分),
小强的体育中考成绩为90×50%+95×30%+95×20%=92.5(分).
20.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:无论k取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为x1,x2,且k与都为整数,求k所有可能的值.
【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,
∴无论k取何值,方程有两个不相等的实数根.
(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,
解得:x=k或x=k+1.
∴一元二次方程x2﹣(2k+1)x+k2+k=0的两根为k,k+1,
∴或,
如果1+为整数,则k为1的约数,
∴k=±1,
如果1﹣为整数,则k+1为1的约数,
∴k+1=±1,
则k为0或﹣2.
∴整数k的所有可能的值为±1,0或﹣2.
21.(10分)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.
(1)求直线AB和反比例函数的解析式;
(2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求△BCE的面积.
【解答】解:(1)设反比例函数解析式为y=,直线AB解析式为y=ax+b,
∵反比例函数的图象过点B(4,1),
∴k=4×1=4,
把点A(0,﹣1),B(4,1)代入y=ax+b得,
解得,
∴直线AB为y=,反比例函数的解析式为y=;
(2)解得或,
∴C(﹣2,﹣2),
设直线CD为y=mx+n,
把C(﹣2,﹣2),D(﹣1,0)代入得,
解得,
∴直线CD为y=2x+2,
由得或,
∴E(1,4),
∴S△BCE=6×6﹣×3﹣﹣=.
22.(10分)如图,A,B是⊙O上两点,且AB=OA,连接OB并延长到点C,使BC=OB,连接AC.
(1)求证:AC是⊙O的切线;
(2)点D,E分别是AC,OA的中点,DE所在直线交⊙O于点F,G,OA=4,求GF的长.
【解答】(1)证明:∵AB=OA=OB,
∴△OAB是等边三角形.
∴∠AOB=∠OBA=∠OAB=60°.
∵BC=OB,
∴BC=AB,
∴∠BAC=∠C,
∵∠OBA=∠BAC+∠C=60°,
∴∠BAC=∠C=30°.
∴∠OAC=∠OAB+∠BAC=90°.
∴OA⊥AC,
∴点A在⊙O上,
∴AC是⊙O的切线;
(2)解:如图,连结OF,过点O作OH⊥GF于点H.
∴GF=2HF,∠OHE=∠OHF=90°.
∵点D,E分别是AC,OA的中点,
∴OE=AE=OA=×4=2,DE∥OC.
∴∠OEH=∠AOB=60°,OH=OEsin∠OEH=.
∴HF===.
∴GF=2HF=2.
23.(10分)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
(1)求苹果的进价;
(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;
(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=﹣x+12.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入﹣购进支出)
【解答】(1)解:设苹果的进价为x元/千克,
根据题意得:,
解得:x=10,
经检验x=10是原方程的根,且符合题意,
答:苹果的进价为10元/千克.
(2)解:当0≤x≤100时,y=10x;
当x>100时,y=10×100+(x﹣100)(10﹣2)=8x+200;
∴y=.
(3)解:当0≤x≤100时,
w=(z﹣10)x
=()x
=,
∴当x=100时,w有最大值为100;
当100<x≤300时,
w=(z﹣10)×100+(z﹣8)(x﹣100)
=()×100+()(x﹣100)
=
=,
∴当x=200时,w有最大值为200;
∵200>100,
∴一天购进苹果数量为200千克时,超市销售苹果利润最大为200元.
答:一天购进苹果数量为200千克时,超市销售苹果利润最大.
24.(10分)如图,点E在正方形ABCD边AD上,点F是线段AB上的动点(不与点A重合),DF交AC于点G,GH⊥AD于点H,AB=1,DE=.
(1)求tan∠ACE;
(2)设AF=x,GH=y,试探究y与x的函数关系式(写出x的取值范围);
(3)当∠ADF=∠ACE时,判断EG与AC的位置关系并说明理由.
【解答】解:(1)过点E作EM⊥AC于点M,
∴∠AME=∠EMC=90°,
∵四边形ABCD是边长为1的正方形,DE=,
∴∠CAD=45°,AE=AD﹣DE=1﹣=,
∴EM=AM=AE•sin∠CAD=,AC=,
∴CM=AC﹣AM=﹣=,
∴tan∠ACE===;
(2)∵GH⊥AD,AB⊥AD,
∴GH∥AB,
∴△DHG∽△DAF,
∴,
∴,
∴y=x﹣xy,
∴y=(0<x≤1);
(3)当∠ADF=∠ACE时,EG⊥AC,
理由如下:
∵tan∠ADF=tan∠ACE=,
∴,
∴x=,y=,
∴HA=GH=,
∴EH=AD﹣DE﹣AH=,
∴EG===,
∴EG=EM,
又∵EM⊥AC,
∴点G与点M重合,
∴EG⊥AC.
25.(12分)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.
(1)求抛物线的解析式;
(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;
(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
【解答】解:(1)由题意得:,解得,
故抛物线的表达式为y=x2﹣5x+4①;
(2)对于y=x2﹣5x+4,令y=x2﹣5x+4=0,解得x=1或4,令x=0,则y=4,
故点B的坐标为(4,0),点C(0,4),
设直线BC的表达式为y=kx+t,则,解得,
故直线BC的表达式为y=﹣x+4,
设点P的坐标为(x,﹣x+4),则点Q的坐标为(x,x2﹣5x+4),
则PQ=(﹣x+4)﹣(x2﹣5x+4)=﹣x2+4x,
∵﹣1<0,
故PQ有最大值,当x=2时,PQ的最大值为4=CO,
此时点Q的坐标为(2,﹣2);
∵PQ=CO,PQ∥OC,
故四边形OCPQ为平行四边形;
(3)∵D是OC的中点,则点D(0,2),
由点D、Q的坐标,同理可得,直线DQ的表达式为y=﹣2x﹣2,
过点Q作QH⊥x轴于点H,
则QH∥CO,故∠AQH=∠ODA,
而∠DQE=2∠ODQ.
∴∠HQA=∠HQE,
则直线AQ和直线QE关于直线QH对称,
故设直线QE的表达式为y=2x+r,
将点Q的坐标代入上式并解得r=﹣6,
故直线QE的表达式为y=2x﹣6②,
联立①②并解得(不合题意的值已舍去),
故点E的坐标为(5,4),
设点F的坐标为(0,m),
由点B、E的坐标得:BE2=(5﹣4)2+(4﹣0)2=17,
同理可得,当BE=BF时,即16+m2=17,解得m=±1;
当BE=EF时,即25+(m﹣4)2=17,方程无解;
当BF=EF时,即16+m2=25+(m﹣4)2,解得m=;
故点F的坐标为(0,1)或(0,﹣1)或(0,).
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/6/23 8:56:52;用户:柯瑞;邮箱:ainixiaoke00@;学号:500557
第27页(共27页)