分享
海南-word解析.doc
下载文档

ID:3180213

大小:1.15MB

页数:13页

格式:DOC

时间:2024-01-29

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
海南 word 解析
海南省2020年初中学业水平考试 数学 (考试时间100分钟,满分120分) 一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑. 1. 实数的相反数是( ) A. B. C. D. 2. 从海南省可再生能源协会2020年会上获悉,截至4月底,今年我省风电、光伏及生物质能的新能源发电量约千瓦时.数据可用科学记数法表示为( ) A. B. C. D. 3. 图1是由个相同的小正方体组成的几何体,则它的俯视图是( ) A. B. C. D. 4. 不等式的解集是( ) A. B. C. D. 5. 在学校开展的环保主题实践活动中,某小组的位同学捡拾废弃塑料袋的个数分别为:.这组数据的众数、中位数分别为( ) A. B. C. D. 6. 如图2,已知直线和相交于点若,则等于( ) A. B. C. D. 7. 如图3,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是( ) A. B. C. D. 8.分式方程的解是( ) A. B. C. D. 9. 下列各点中,在反比例函数图象上的点是( ) A. B. C. D. 10. 如图4,已知是的直径,是弦,若则等于( ) A. B. C. D. 11. 如图5,在中,的平分线交于点交的延长线于点于点,若则的周长为( ) A. B. C. D. 12. 如图6,在矩形中,点在边上,和交于点若,则图中阴影部分的面积为( ) A. B. C. D. 二、填空题(本大题满分16分,每小题4分,其中第16小题每空2分) 13. 因式分解: . 14. 正六边形的一个外角等于 度. 15. 如图7,在中,,分别以点为圆心,大于的长为半径画弧,两弧相交于点作直线交边于点连接则的周长为_ . 16. 海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.图8是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第个图至第个图中的规律编织图案,则第个图中有 _个菱形, 第个图中有__ 个菱形(用含的代数式表示). 三、解答题(本大题满分68分) 17. 计算: ; . 18.某村经济合作社决定把吨竹笋加工后再上市销售,刚开始每天加工吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工吨,前后共用天完成全部加工任务,问该合作社改进加工方法前后各用了多少天? 19.新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长(单位:小时)的情况,在全市范围内随机抽取了名初中生进行调查,并将所收集的数据分组整理,绘制了如图9所示的不完整的频数分布直方图和扇形统计图. 根据图中信息,解答下列问题: 在这次调查活动中,采取的调查方式是_ (填写“全面调查”或“抽样调查”),_ . 从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“”范围的概率是 ; 若该市有名初中生,请你估计该市每日线上学习时长在“”范围的初中生有_ 名. 20.为了促进海口主城区与江东新区联动发展,文明东越江通道将于今年底竣工通车.某校数学实践活动小组利用无人机测算该越江通道的隧道长度.如图10, 隧道在水平直线上,且无人机和隧道在同一个铅垂面内,无人机在距离隧道米的高度上水平飞行,到达点处测得点的俯角为继续飞行米到达点处,测得点的俯角为. 填空:__________度,_________度; 求隧道的长度(结果精确到米). (参考数据:) 21.四边形是边长为的正方形,是的中点,连结,点是射线上一动点(不与点重合),连结交于点. 如图11-1,当点是边的中点时,求证:; 如图11-2,当点与点重合时,求的长; 在点运动的过程中,当线段为何值时,?请说明理由. 22.抛物线经过点和点,与轴交于点. 求该抛物线的函数表达式; 点是该抛物线上的动点,且位于轴的左侧. 如图12-1,过点作轴于点,作轴于点,当时,求的长; 如图12-2, 该抛物线上是否存在点,使得?若存在,请求出所有点的坐标;若不存在,请说明理由. 海南省2020年初中学业水平考试 数学参考答案及评分标准 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 二、填空题 13. 14. 15. 16., 三、解答题 17. 解:原式 原式 . 18. 解:设改进加工方法前用了天,改进加工方法后用了天. 则 解得 经检验,符合题意. 答:改进加工方法前用了天,改进加工方法后用了天. 19. 解:抽样调查 20.解: 过点作于点过点作于点. 则 在中, 在中, (米). 答:隧道的长度约为米. 21.证明: 四边形是正方形. 点分别是的中点 . 解:在正方形中, 即 当时,.理由如下: 由知,当点与重合(即)时, 点应在的延长线上(即), 如图所示,设交于点 若使 则有 又 在中, 即 即 故当时, 22. 解:抛物线经过点, 解得 所以抛物线的函数表达式为 设则. 因为点是抛物线上的动点且位于轴左侧, 当点在轴上时,点与重合,不合题意,故舍去, 因此分为以下两种情况讨论:. 如图1,当点在第三象限时,点坐标为, 则即 解得(舍去) 如图2,当点在第二象限时,点坐标为, 则即 解得(舍去) 综上所述,的长为或 存在点,使得,理由如下: 当时, 在中, 过点作于点,交直线于点 则 又 过点作轴于点则 即 如图3,当点在第三象限时,点的坐标为 由和得 直线的解析式为. 于是有, 即 解得(舍去) 点的坐标为 如图4,当点在第二象限时,点的坐标为 由和得 直线的解析式为 于是有 即 解得(舍去) 点的坐标为 综上所述,点的坐标为或

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开