温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2014
江苏
高考
数学试题
答案
www
ximiyu
com
2014年普通高等学校招生全国统一考试(江苏卷)
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
开始
输出n
结束
(第3题)
N
Y
1. 已知集合A={},,则 ▲ .
2. 已知复数(i为虚数单位),则的实部为 ▲ .
3. 右图是一个算法流程图,则输出的的值是 ▲ .
4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲ .
5. 已知函数与(0≤),zxxk它们的图象有一个横坐标为的交点,则的值是 ▲ .
6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.
100
80
90
110
120
130
0.010
0.015
0.020
0.025
0.030
底部周长/cm
(第6题)
7. 在各项均为正数的等比数列中,,则的值是 ▲ .
8. 设甲、乙两个圆柱的底面分别为,,体积分别为,,若它们的侧面积相等,且,则的值是 ▲ .
9. 在平面直角坐标系中,直线被圆截得的弦长为 ▲ .
10. 已知函数若对于任意,都有成立,则实数的取值范围是 ▲ .
11. 在平面直角坐标系中,若曲线(a,b为常数) zxxk过点,且该曲线在点P处的切线与直线平行,则的值是 ▲ .
A
B
D
C
P
(第12题)
12. 如图,在平行四边形中,已知,,,,则的值是 ▲ .
13. 已知是定义在R上且周期为3的函数,当时,.若函数在区间上有10个零点(互不相同),则实数的取值范围是 ▲ .
14. 若△的内角满足,则的最小值是 ▲ .
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,学科网解答时应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
已知,.
(1)求的值;
(2)求的值.
16.(本小题满分14分)
如图,在三棱锥中,,E,F分zxxk别为棱的中点.已知,
求证: (1)直线平面;
(2)平面平面.
17.(本小题满分14分)
如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A,过点A作轴的垂线交椭圆于另一点C,连结.
F1
F2
O
x
y
B
C
A
(第17题)
(1)若点C的坐标为,且,求椭圆的方程;
(2)若求椭圆离心率e的值.
18.(本小题满分16分)
如图,为了保护河上古桥,规划建一座新桥BC,同时设立一个圆形学科网保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆.且古桥两端O和A到该圆上任意一点的距离均不少于80m. 经测量,点A位于点O正北方向60m处, 点C位于点O正东方向170m处(OC为河岸),.
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?
170 m
60 m
东
北
O
A
B
M
C
(第18题)
19.(本小题满分16分)
已知函数,其中e是自然对数的底数.
(1)证明:是R上的偶函数;
(2)若关于的不等式≤在上恒成立,学科网求实数的取值范围;
(3)已知正数满足:存在,使得成立.试比较与的大小,并证明你的结论.
20.(本小题满分16分)
设数列的前项和为.若对任意正整数,学科网总存在正整数,使得,则称是“H数列”.
(1)若数列的前n项和(N),证明: 是“H数列”;
(2)设 是等差数列,其首项,公差.若 是“H数列”,求的值;
(3)证明:对任意的等差数列,总存在两个“H数列”和,使得
(N)成立.
三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】
21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.
【选修4-2:矩阵与变换】
22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.
【选修4-3:极坐标及参数方程】
23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.
【选修4-4:不等式选讲】
24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.
(二)必做题(本部分包括25、26两题,每题10分,共计20分)
25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;
(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).
26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*.
(1)求2f1()+f2()的值;
(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.
2014年江苏省高考数学试卷
参考答案与试题解析
一、填空题(本大题共14小题,每小题5分,共计70分)
1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B= {﹣1,3} .
考点:
交集及其运算.菁优网版权所有
专题:
集合.
分析:
根据集合的基本运算即可得到结论.
解答:
解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},
∴A∩B={﹣1,3},
故答案为:{﹣1,3}
点评:
本题主要考查集合的基本运算,比较基础.
2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .
考点:
复数的基本概念;复数代数形式的乘除运算.菁优网版权所有
专题:
数系的扩充和复数.
分析:
根据复数的有关概念,即可得到结论.
解答:
解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,
故z的实部为21,
故答案为:21
点评:
本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.
3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是 5 .
考点:
程序框图.菁优网版权所有
专题:
算法和程序框图.
分析:
算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.
解答:
解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,
∵24=16<20,25=32>20,
∴输出n=5.
故答案为:5.
点评:
本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.
4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是 .
考点:
古典概型及其概率计算公式.菁优网版权所有
专题:
概率与统计.
分析:
首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.
解答:
解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,
所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,
故所求概率P=.
故答案为:.
点评:
本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.
5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是 .
考点:
三角方程;函数的零点.菁优网版权所有
专题:
三角函数的求值;三角函数的图像与性质.
分析:
由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.
解答:
解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,
∴=.
∵0≤φ<π,∴,
∴+φ=,
解得φ=.
故答案为:.
点评:
本题考查了三角函数的图象与性质、三角函数求值,属于基础题.
6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.
考点:
频率分布直方图.菁优网版权所有
专题:
概率与统计.
分析:
根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.
解答:
解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,
∴底部周长小于100cm的频数为60×0.4=24(株).
故答案为:24.
点评:
本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.
7.(5分)(2014•江苏)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 .
考点:
等比数列的通项公式.菁优网版权所有
专题:
等差数列与等比数列.
分析:
利用等比数列的通项公式即可得出.
解答:
解:设等比数列{an}的公比为q>0,a1>0.
∵a8=a6+2a4,
∴,
化为q4﹣q2﹣2=0,解得q2=2.
∴a6===1×22=4.
故答案为:4.
点评:
本题考查了等比数列的通项公式,属于基础题.
8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是 .
考点:
棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台).菁优网版权所有
专题:
立体几何.
分析:
设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.
解答:
解:设两个圆柱的底面半径分别为R,r;高分别为H,h;
∵=,
∴,它们的侧面积相等,
∴,
∴===.
故答案为:.
点评:
本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.
9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为 .
考点:
直线与圆的位置关系.菁优网版权所有
专题:
直线与圆.
分析:
求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.
解答:
解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,
∵点C到直线直线x+2y﹣3=0的距离d==,
∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=
故答案为:.
点评:
本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.
10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是 (﹣,0) .
考点:
二次函数的性质.菁优网版权所有
专题:
函数的性质及应用.
分析:
由条件利用二次函数的性质可得 ,由此求得m的范围.
解答:
解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,
对于任意x∈[m,m+1],都有f(x)<0成立,∴,
即 ,解得﹣<m<0,
故答案为:(﹣,0).
点评:
本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.
11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是 ﹣3 .
考点:
利用导数研究曲线上某点切线方程.菁优网版权所有
专题:
导数的概念及应用.
分析:
由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.
解答:
解:∵直线7x+2y+3=0的斜率k=,
曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,
∴y′=2ax﹣,
∴,
解得:,
故a+b=﹣3,
故答案为:﹣3
点评:
本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.
12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .
考点:
向量在几何中的应用;平面向量数量积的运算.菁优网版权所有
专题:
平面向量及应用.
分析:
由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.
解答:
解:∵=3,
∴=+,=﹣,
又∵AB=8,AD=5,
∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,
故•=22,
故答案为:22.
点评:
本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.
13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是 (0,) .
考点:
根的存在性及根的个数判断.菁优网版权所有
专题:
函数的性质及应用.
分析:
在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.
解答:
解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.
故答案为:(0,).
点评:
本题考查函数的图象以函数的零点的求法,数形结合的应用.
14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是 .
考点:
余弦定理;正弦定理.菁优网版权所有
专题:
三角函数的图像与性质;解三角形.
分析:
根据正弦定理和余弦定理,利用基本不等式即可得到结论.
解答:
解:由正弦定理得a+b=2c,得c=(a+b),
由余弦定理得cosC===
=≥=,
当且仅当时,取等号,
故≤cosC<1,故cosC的最小值是.
故答案为:.
点评:
本题主要考查正弦定理和余弦定理的应用,利用基本不等式是解决本题的关键.
二、解答题(本大题共6小题,共计90分)
15.(14分)(2014•江苏)已知α∈(,π),sinα=.
(1)求sin(+α)的值;
(2)求cos(﹣2α)的值.
考点:
两角和与差的正弦函数;两角和与差的余弦函数.菁优网版权所有
专题:
三角函数的求值;三角函数的图像与性质.
分析:
(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;
(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.
解答:
解:α∈(,π),sinα=.∴cosα=﹣=
(1)sin(+α)=sincosα+cossinα==﹣;
∴sin(+α)的值为:﹣.
(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣
∴cos(﹣2α)=coscos2α+sinsin2α==﹣.
cos(﹣2α)的值为:﹣.
点评:
本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.
16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.
考点:
平面与平面垂直的判定;直线与平面垂直的判定.菁优网版权所有
专题:
空间位置关系与距离;空间角;立体几何.
分析:
(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;
(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.
解答:
证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,
又∵PA⊄平面DEF,DE⊂平面DEF,
∴PA∥平面DEF;
(2)∵D、E为PC、AC的中点,∴DE=PA=3;
又∵E、F为AC、AB的中点,∴EF=BC=4;
∴DE2+EF2=DF2,
∴∠DEF=90°,
∴DE⊥EF;
∵DE∥PA,PA⊥AC,∴DE⊥AC;
∵AC∩EF=E,∴DE⊥平面ABC;
∵DE⊂平面BDE,∴平面BDE⊥平面ABC.
点评:
本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.
17.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.
(1)若点C的坐标为(,),且BF2=,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.
考点:
椭圆的简单性质;椭圆的标准方程.菁优网版权所有
专题:
圆锥曲线的定义、性质与方程.
分析:
(1)根据椭圆的定义,建立方程关系即可求出a,b的值.
(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.
解答:
解:(1)∵C的坐标为(,),
∴,即,
∵,
∴a2=()2=2,即b2=1,
则椭圆的方程为+y2=1.
(2)设F1(﹣c,0),F2(c,0),
∵B(0,b),
∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,
解得x=0,或x=,
∵A(,),且A,C关于x轴对称,
∴C(,﹣),
则=﹣=,
∵F1C⊥AB,
∴×()=﹣1,
由b2=a2﹣c2得,
即e=.
点评:
本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.
18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?
考点:
圆的切线方程;直线与圆的位置关系.菁优网版权所有
专题:
直线与圆.
分析:
(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;
(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.
解答:
解:(1)如图,
过B作BE⊥OC于E,过A作AF⊥BE于F,
∵∠ABC=90°,∠BEC=90°,
∴∠ABF=∠BCE,
∴.
设AF=4x(m),则BF=3x(m).
∵∠AOE=∠AFE=∠OEF=90°,
∴OE=AF=4x(m),EF=AO=60(m),
∴BE=(3x+60)m.
∵,
∴CE=(m).
∴(m).
∴,
解得:x=20.
∴BE=120m,CE=90m,
则BC=150m;
(2)如图,
设BC与⊙M切于Q,延长QM、CO交于P,
∵∠POM=∠PQC=90°,
∴∠PMO=∠BCO.
设OM=xm,则OP=m,PM=m.
∴PC=m,PQ=m.
设⊙M半径为R,
∴R=MQ=m=m.
∵A、O到⊙M上任一点距离不少于80m,
则R﹣AM≥80,R﹣OM≥80,
∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.
解得:10≤x≤35.
∴当且仅当x=10时R取到最大值.
∴OM=10m时,保护区面积最大.
点评:
本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.
19.(16分)(2014•江苏)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;
(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.
考点:
利用导数求闭区间上函数的最值.菁优网版权所有
专题:
导数的综合应用.
分析:
(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;
(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;
(3)构u造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.
解答:
解:(1)∵f(x)=ex+e﹣x,
∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,
即m(ex+e﹣x﹣1)≤e﹣x﹣1,
∵x>0,
∴ex+e﹣x﹣1>0,
即m≤在(0,+∞)上恒成立,
设t=ex,(t>1),则m≤在(1,+∞)上恒成立,
∵=﹣=﹣,当且仅当t=2时等号成立,
∴m.
(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),
则g′(x)=ex﹣e﹣x+3a(x2﹣1),
当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,
故此时g(x)的最小值g(1)=e+﹣2a,
由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,
故e+﹣2a<0,
即a>(e+),
令h(x)=x﹣(e﹣1)lnx﹣1,
则h′(x)=1﹣,
由h′(x)=1﹣=0,解得x=e﹣1,
当0<x<e﹣1时,h′(x)<0,此时函数单调递减,
当x>e﹣1时,h′(x)>0,此时函数单调递增,
∴h(x)在(0,+∞)上的最小值为h(e﹣1),
注意到h(1)=h(e)=0,
∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,
当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,
∴h(x)<0,对任意的x∈(1,e)成立.
①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,
②当a=e时,ae﹣1=ea﹣1,
③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而ea﹣1>ae﹣1.
点评:
本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.
20.(16分)(2014•江苏)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
考点:
数列的应用;等差数列的性质.菁优网版权所有
专题:
等差数列与等比数列.
分析:
(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.
(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;
(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.
解答:
解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,
当n=1时,a1=S1=2.
当n=1时,S1=a1.
当n≥2时,Sn=an+1.
∴数列{an}是“H”数列.
(2)Sn==,
对∀n∈N*,∃m∈N*使Sn=am,即,
取n=2时,得1+d=(m﹣1)d,解得,
∵d<0,∴m<2,
又m∈N*,∴m=1,∴d=﹣1.
(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,
对∀n∈N*,bn+1﹣bn=﹣a1,
cn=(n﹣1)(a1+d),
对∀n∈N*,cn+1﹣cn=a1+d,
则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.
数列{bn}的前n项和Tn=,
令Tn=(2﹣m)a1,则.
当n=1时,m=1;当n=2时,m=1.
当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.
因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.
数列{cn}的前n项和Rn=,
令cm=(m﹣1)(a1+d)=Rn,则m=.
∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.
因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.
因此命题得证.
点评:
本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.
三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】
21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.
考点:
弦切角.菁优网版权所有
专题:
直线与圆.
分析:
利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.
解答:
证明:∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠D,
∴∠OCB=∠D.
点评:
本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.
【选修4-2:矩阵与变换】
22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.
考点:
矩阵与向量乘法的意义.菁优网版权所有
专题:
矩阵和变换.
分析:
利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y的值.
解答:
解:∵矩阵A=,B=,向量=,A=B,
∴,
∴x=﹣,y=4,
∴x+y=
点评:
本题考查矩阵的乘法,考查学生的计算能力,属于基础题.
【选修4-3:极坐标及参数方程】
23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.
考点:
直线的参数方程.菁优网版权所有
专题:
计算题;坐标系和参数方程.
分析:
直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.
解答:
解:直线l的参数方程为,化为普通方程为x+y=3,
与抛物线y2=4x联立,可得x2﹣10x+9=0,
∴交点A(1,2),B(9,﹣6),
∴|AB|==8.
点评:
本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.
【选修4-4:不等式选讲】
24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.
考点:
不等式的证明.菁优网版权所有
专题:
证明题;不等式的解法及应用.
分析:
由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.
解答:
证明:由均值不等式可得1+x+y2≥3,1+x2+y≥
分别当且仅当x=y2=1,x2=y=1时等号成立,
∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.
点评:
本题考查不等式的证明,正确运用均值不等式是关键.
(二)必做题(本部分包括25、26两题,每题10分,共计20分)
25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;
(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).
考点:
离散型随机变量的期望与方差;古典概型及其概率计算公式.菁优网版权所有
专题:
概率与统计.
分析:
(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;
(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.
解答:
解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况
∴取出的2个球颜色相同的概率P=.
(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=
于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,
X的概率分布列为
X
2
3
4
P
故X数学期望E(X)=.
点评:
本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.
26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*.
(1)求2f1()+f2()的值;
(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.
考点:
三角函数中的恒等变换应用;导数的运算.菁优网版权所有
专题:
函数的性质及应用;三角函数的求值.
分析:
(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;
(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.
解答:
解:(1)∵f0(x)=,∴xf0(x)=sinx,
则两边求导,[xf0(x)]′=(sinx)′,
∵fn(x)为fn﹣1(x)的导数,n∈N*,
∴f0(x)+xf1(x)=cosx,
两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,
将x=代入上式得,2f1()+f2()=﹣1,
(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),
恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),
再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),
同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),
猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,
下面用数学归纳法进行证明等式成立:
①当n=1时,成立,则上式成立;
②假设n=k(k>1且k∈N*)时等式成立,即,
∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)
=(k+1)fk(x)+xfk+1(x)
又
===,
∴那么n=k+1(k>1且k∈N*)时.等式也成立,
由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,
令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,
所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.
点评:
本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.