分享
2011年天津高考文科数学试题及答案(Word版)(www.ximiyu.com).doc
下载文档

ID:3174228

大小:1.01MB

页数:12页

格式:DOC

时间:2024-01-27

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2011 天津 高考 文科 数学试题 答案 Word www ximiyu com
2011年天津高考文科数学试题及答案详细解析(天津卷) 参考公式: 如果事件A,B互斥,那么 棱柱的体积公式 其中S表示棱柱的底面面积。 一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的. 1.是虚数单位,复数= A.     B.   C.   D. 2.设变量x,y满足约束条件则目标函数的最大值为 A.-4     B.0 C.     D.4 3.阅读右边的程序框图,运行相应的程序,若输入的值为-4,则输出的值为 A.,0.5 B.1 C.2 D.4 4.设集合,, 则“”是“”的 A.充分而不必要条件        B.必要而不充分条件 C.充分必要条件         D.即不充分也不必要条件 5.已知则 A.    B. C.  D. 6.已知双曲线的左顶点与抛物线的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( ) A. B. C. D. 7.已知函数,其中的最小正周期为,且当时,取得最大值,则 ( ) A.在区间上是增函数 B.在区间上是增函数 C.在区间上是减函数 D.在区间上是减函数 8.对实数,定义运算“”:设函数。若函数的图象与轴恰有两个公共点,则实数的取值范围是 ( ) A. B. C.D.[-2,-1] 二、填空题:本大题共6小题,每小题5分,共30分. 9.已知集合为整数集,则集合中所有元素的和等于________ 10.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________ 11.已知为等差数列,为其前项和,, 若则的值为_______ 12.已知,则的最小值为__________ 13.如图已知圆中两条弦与相交于点,是延长 线上一点,且 若与圆相切,则的长为__________ 14.已知直角梯形中,//,,, 是腰上的动点,则的最小值为____________ 三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 15.编号为的16名篮球运动员在某次训练比赛中的得分记录如下: 运动员编号 得分 15 35 21 28 25 36 18 34 运动员编号 得分 17 26 25 33 22 12 31 38 (Ⅰ)将得分在对应区间内的人数填入相应的空格; 区间 人数 (Ⅱ)从得分在区间内的运动员中随机抽取2人, (i)用运动员的编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50的概率. 16. 在△中,内角的对边分别为,已知 (Ⅰ)求的值; (Ⅱ)的值. 17.(本小题满分13分)如图,在四棱锥中,底面为 平行四边形,,,为中点, 平面,, 为中点. (Ⅰ)证明://平面; (Ⅱ)证明:平面; (Ⅲ)求直线与平面所成角的正切值. 18.(本小题满分13分) 设椭圆的左、右焦点分别为F1,F2。点满足 (Ⅰ)求椭圆的离心率; (Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆相交于M,N两点,且,求椭圆的方程。 19.(本小题满分14分)已知函数,其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求的单调区间; (Ⅲ)证明:对任意的在区间内均存在零点. 20.(本小题满分14分) 已知数列满足 (Ⅰ)求的值; (Ⅱ)设,证明是等比数列; (Ⅲ)设为的前项和,证明 参考答案 一、选择题:本题考查基本知识和基本运算,每小题5分,满分40分。 1. 【答案】A 【解析】 . 2. 【答案】D 【解析】可行域如图: x y o 1 2 3 4 -1 -2 -3 -4 1 2 3 4 x=1 x-3y+4=0 x+y-4=0 联立解得当目标直线移至(2.2)时,有最大值4. 3. 【答案】C 【解析】当时,; 当时, 当时,, ∴. 4. 【答案】C 【解析】∵,, ∴,或,又∵或, ∴,即“”是“”的充分必要条件. 5. 【答案】B 【解析】∵,又∵为单调递增函数, ∴, ∴. 6. 【答案】B 【解析】双曲线的渐近线为,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得,即, 又∵,∴,将(-2,-1)代入得, ∴,即. 7. 【答案】A 【解析】∵,∴.又∵且, ∴当时,,要使递增,须有,解之得,当时,,∴在上递增. 8. 【答案】B 【解析】 则的图象如图, x y o 1 2 3 4 -1 -2 -3 -4 1 2 3 4 -1 -2 -3 ∵函数的图象与轴恰有两个公共点, ∴函数与的图象有两个交点,由图象可得. 二、填空题:本题考查基本知识和基本运算,每小题5分,满分30分。 9.【答案】3 【解析】.∴,即 10.【答案】4 【解析】. 11.【答案】110 【解析】设等差数列的首项为,公差为,由题意得,,解之得,∴. 12.【答案】18 【解析】∵, ∴, ∴. 13. 【答案】 【解析】设,,,由得,即. ∴, 由切割定理得, ∴. 14.【答案】5 【解析】建立如图所示的坐标系,设,则,设 则,∴. A B C D o x y 三、解答题 (15)本小题主要考查用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式的等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力,满分13分。 (Ⅰ)解:4,6,6 (Ⅱ)(i)解:得分在区间内的运动员编号为从中随机抽取2人,所有可能的抽取结果有: , , 共15种。 (ii)解:“从得分在区间内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B)的所有可能结果有:,共5种。 所以 (16)本小题主要考查余弦定理、两角和的余弦公式、同角三角函数的基本关系、二倍角的正弦、余弦公式等基础知识,考查基本运算能力,满分13分。 (Ⅰ)解:由 所以 (Ⅱ)解:因为,所以 所以 (17)本小题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力。满分13分。 (Ⅰ)证明:连接BD,MO,在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB//MO。因为平面ACM,平面ACM,所以PB//平面ACM。 (Ⅱ)证明:因为,且AD=AC=1, 所以,即,又PO平面ABCD,平面ABCD, 所以,所以平面PAC。 (Ⅲ)解:取DO中点N,连接MN,AN,因为M为PD的中点, 所以MN//PO,且平面ABCD,得平面ABCD, 所以是直线AM与平面ABCD所成的角,在中,, 所以,从而, 在, 即直线AM与平面ABCD所成角的正切值为 (18)本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公式、点到直线的距离公式、直线与圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力,满分13分。 (Ⅰ)解:设,因为, 所以,整理得(舍) 或 (Ⅱ)解:由(Ⅰ)知,可得椭圆方程为,直线FF2的方程为 A,B两点的坐标满足方程组消去并整理,得。解得,得方程组的解 不妨设,,所以 于是 圆心到直线PF2的距离 因为,所以 整理得,得(舍),或所以椭圆方程为 (19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当时, 所以曲线在点处的切线方程为 (Ⅱ)解:,令,解得 因为,以下分两种情况讨论: (1)若变化时,的变化情况如下表: + - + 所以,的单调递增区间是的单调递减区间是。 (2)若,当变化时,的变化情况如下表: + - + 所以,的单调递增区间是的单调递减区间是 (Ⅲ)证明:由(Ⅱ)可知,当时,在内的单调递减,在内单调递增,以下分两种情况讨论: (1)当时,在(0,1)内单调递减, 所以对任意在区间(0,1)内均存在零点。 (2)当时,在内单调递减,在内单调递增,若 所以内存在零点。 若 所以内存在零点。 所以,对任意在区间(0,1)内均存在零点。 综上,对任意在区间(0,1)内均存在零点。 (20)本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论的思想方法。满分14分。 (Ⅰ)解:由,可得 又, 当 当 (Ⅱ)证明:对任意 ① ② ②-①,得 所以是等比数列。 (Ⅲ)证明:,由(Ⅱ)知,当时, 故对任意 由①得 因此, 于是, 故

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开