分享
2021年北京市高考数学试题(原卷版).doc
下载文档

ID:3172516

大小:479.50KB

页数:4页

格式:DOC

时间:2024-01-27

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2021 北京市 高考 数学试题 原卷版
2021年普通高等学校招生全国统一考试(北京卷)数学 第一部分(选择题共40分) 一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知集合,,则( ) A. B. C. D. 2. 在复平面内,复数满足,则( ) A. B. C. D. 3. 已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 4. 某四面体的三视图如图所示,该四面体的表面积为( ) A B. 4 C. D. 2 5. 双曲线过点,且离心率为,则该双曲线的标准方程为( ) A. B. C. D. 6. 和是两个等差数列,其中为常值,,,,则( ) A. B. C. D. 7. 函数,试判断函数奇偶性及最大值( ) A. 奇函数,最大值为2 B. 偶函数,最大值为2 C. 奇函数,最大值为 D. 偶函数,最大值为 8. 定义:24小时内降水在平地上积水厚度()来判断降雨程度.其中小雨(),中雨(),大雨(),暴雨(),小明用一个圆锥形容器接了24小时雨水,如图,则这天降雨属于哪个等级( ) A. 小雨 B. 中雨 C. 大雨 D. 暴雨 9. 已知圆,直线,当变化时,截得圆弦长的最小值为2,则( ) A. B. C. D. 10. 数列是递增的整数数列,且,,则的最大值为( ) A. 9 B. 10 C. 11 D. 12 第二部分(非选择题共110分) 二、填空题5小题,每小题5分,共25分. 11. 展开式中常数项为__________. 12. 已知抛物线,焦点为,点为抛物线上的点,且,则的横坐标是_______;作轴于,则_______. 13. ,,,则_______;_______. 14. 若点与点关于轴对称,写出一个符合题意的___. 15. 已知函数,给出下列四个结论: ①若,则有两个零点; ②,使得有一个零点; ③,使得有三个零点; ④,使得有三个零点. 以上正确结论得序号_______. 三、解答题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程. 16. 已知中,,. (1)求的大小; (2)在下列三个条件中选择一个作为已知,使存在且唯一确定,并求出边上的中线的长度. ①;②周长为;③面积为; 17. 已知正方体,点为中点,直线交平面于点. (1)证明:点为的中点; (2)若点为棱上一点,且二面角的余弦值为,求的值. 18. 为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒. (1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数; ②已知10人分成一组,分10组,两名感染患者在同一组的概率为,定义随机变量X为总检测次数,求检测次数X的分布列和数学期望E(X); (2)若采用“5合1检测法”,检测次数Y的期望为E(Y),试比较E(X)和E(Y)的大小(直接写出结果). 19. 已知函数. (1)若,求在处切线方程; (2)若函数在处取得极值,求的单调区间,以及最大值和最小值. 20. 已知椭圆过点,以四个顶点围成的四边形面积为. (1)求椭圆E的标准方程; (2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M、N,直线AC交y=-3于点N,若|PM|+|PN|≤15,求k的取值范围. 21. 定义数列:对实数p,满足:①,;②;③,. (1)对于前4项2,-2,0,1的数列,可以是数列吗?说明理由; (2)若是数列,求的值; (3)是否存在p,使得存在数列,对?若存在,求出所有这样的p;若不存在,说明理由.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开