温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2018
全国
统一
高考
数学试卷
文科
新课
2018年全国统一高考数学试卷(文科)(新课标Ⅰ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=( )
A.{0,2} B.{1,2} C.{0} D.{﹣2,﹣1,0,1,2}
2.(5.00分)设z=+2i,则|z|=( )
A.0 B. C.1 D.
3.(5.00分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是( )
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.(5.00分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为( )
A. B. C. D.
5.(5.00分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )
A.12π B.12π C.8π D.10π
6.(5.00分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )
A.y=﹣2x B.y=﹣x C.y=2x D.y=x
7.(5.00分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )
A.﹣ B.﹣ C.+ D.+
8.(5.00分)已知函数f(x)=2cos2x﹣sin2x+2,则( )
A.f(x)的最小正周期为π,最大值为3
B.f(x)的最小正周期为π,最大值为4
C.f(x)的最小正周期为2π,最大值为3
D.f(x)的最小正周期为2π,最大值为4
9.(5.00分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )
A.2 B.2 C.3 D.2
10.(5.00分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为( )
A.8 B.6 C.8 D.8
11.(5.00分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=( )
A. B. C. D.1
12.(5.00分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是( )
A.(﹣∞,﹣1] B.(0,+∞) C.(﹣1,0) D.(﹣∞,0)
二、填空题:本题共4小题,每小题5分,共20分。
13.(5.00分)已知函数f(x)=log2(x2+a),若f(3)=1,则a= .
14.(5.00分)若x,y满足约束条件,则z=3x+2y的最大值为 .
15.(5.00分)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|= .
16.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.已知bsinC+csinB=4asinBsinC,b2+c2﹣a2=8,则△ABC的面积为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12.00分)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=.
(1)求b1,b2,b3;
(2)判断数列{bn}是否为等比数列,并说明理由;
(3)求{an}的通项公式.
18.(12.00分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.
(1)证明:平面ACD⊥平面ABC;
(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.
19.(12.00分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量
[0,0.1)
[0.1,0.2)
[0.2,0.3)
[0.3,0.4)
[0.4,0.5)
[0.5,0.6)
[0.6,0.7)
频数
1
3
2
4
9
26
5
使用了节水龙头50天的日用水量频数分布表
日用水量
[0,0.1)
[0.1,0.2)
[0.2,0.3)
[0.3,0.4)
[0.4,0.5)
[0.5,0.6)
频数
1
5
13
10
16
5
(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;
(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)
20.(12.00分)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.
(1)当l与x轴垂直时,求直线BM的方程;
(2)证明:∠ABM=∠ABN.
21.(12.00分)已知函数f(x)=aex﹣lnx﹣1.
(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;
(2)证明:当a≥时,f(x)≥0.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
22.(10.00分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.
(1)求C2的直角坐标方程;
(2)若C1与C2有且仅有三个公共点,求C1的方程.
[选修4-5:不等式选讲](10分)
23.已知f(x)=|x+1|﹣|ax﹣1|.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.
2018年全国统一高考数学试卷(文科)(新课标Ⅰ)
参考答案与试题解析
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=( )
A.{0,2} B.{1,2} C.{0} D.{﹣2,﹣1,0,1,2}
【分析】直接利用集合的交集的运算法则求解即可.
【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},
则A∩B={0,2}.
故选:A.
【点评】本题考查集合的基本运算,交集的求法,是基本知识的考查.
2.(5.00分)设z=+2i,则|z|=( )
A.0 B. C.1 D.
【分析】利用复数的代数形式的混合运算化简后,然后求解复数的模.
【解答】解:z=+2i=+2i=﹣i+2i=i,
则|z|=1.
故选:C.
【点评】本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.
3.(5.00分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是( )
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
【分析】设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.
【解答】解:设建设前经济收入为a,建设后经济收入为2a.
A项,种植收入37%×2a﹣60%a=14%a>0,
故建设后,种植收入增加,故A项错误.
B项,建设后,其他收入为5%×2a=10%a,
建设前,其他收入为4%a,
故10%a÷4%a=2.5>2,
故B项正确.
C项,建设后,养殖收入为30%×2a=60%a,
建设前,养殖收入为30%a,
故60%a÷30%a=2,
故C项正确.
D项,建设后,养殖收入与第三产业收入总和为
(30%+28%)×2a=58%×2a,
经济收入为2a,
故(58%×2a)÷2a=58%>50%,
故D项正确.
因为是选择不正确的一项,
故选:A.
【点评】本题主要考查事件与概率,概率的应用,命题的真假的判断,考查发现问题解决问题的能力.
4.(5.00分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为( )
A. B. C. D.
【分析】利用椭圆的焦点坐标,求出a,然后求解椭圆的离心率即可.
【解答】解:椭圆C:+=1的一个焦点为(2,0),
可得a2﹣4=4,解得a=2,
∵c=2,
∴e===.
故选:C.
【点评】本题考查椭圆的简单性质的应用,考查计算能力.
5.(5.00分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )
A.12π B.12π C.8π D.10π
【分析】利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后求解圆柱的表面积.
【解答】解:设圆柱的底面直径为2R,则高为2R,
圆柱的上、下底面的中心分别为O1,O2,
过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,
可得:4R2=8,解得R=,
则该圆柱的表面积为:=12π.
故选:B.
【点评】本题考查圆柱的表面积的求法,考查圆柱的结构特征,截面的性质,是基本知识的考查.
6.(5.00分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )
A.y=﹣2x B.y=﹣x C.y=2x D.y=x
【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的向量然后求解切线方程.
【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,
可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,
曲线y=f(x)在点(0,0)处的切线的斜率为:1,
则曲线y=f(x)在点(0,0)处的切线方程为:y=x.
故选:D.
【点评】本题考查函数的奇偶性以及函数的切线方程的求法,考查计算能力.
7.(5.00分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )
A.﹣ B.﹣ C.+ D.+
【分析】运用向量的加减运算和向量中点的表示,计算可得所求向量.
【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,
=﹣=﹣
=﹣×(+)
=﹣,
故选:A.
【点评】本题考查向量的加减运算和向量中点表示,考查运算能力,属于基础题.
8.(5.00分)已知函数f(x)=2cos2x﹣sin2x+2,则( )
A.f(x)的最小正周期为π,最大值为3
B.f(x)的最小正周期为π,最大值为4
C.f(x)的最小正周期为2π,最大值为3
D.f(x)的最小正周期为2π,最大值为4
【分析】首先通过三角函数关系式的恒等变换,把函数的关系式变形成余弦型函数,进一步利用余弦函数的性质求出结果.
【解答】解:函数f(x)=2cos2x﹣sin2x+2,
=2cos2x﹣sin2x+2sin2x+2cos2x,
=4cos2x+sin2x,
=3cos2x+1,
=,
=,
故函数的最小正周期为π,
函数的最大值为,
故选:B.
【点评】本题考查的知识要点:三角函数关系式的恒等变换,余弦型函数的性质的应用.
9.(5.00分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )
A.2 B.2 C.3 D.2
【分析】判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.
【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,
直观图以及侧面展开图如图:
圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.
故选:B.
【点评】本题考查三视图与几何体的直观图的关系,侧面展开图的应用,考查计算能力.
10.(5.00分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为( )
A.8 B.6 C.8 D.8
【分析】画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.
【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,
AC1与平面BB1C1C所成的角为30°,
即∠AC1B=30°,可得BC1==2.
可得BB1==2.
所以该长方体的体积为:2×=8.
故选:C.
【点评】本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能力.
11.(5.00分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=( )
A. B. C. D.1
【分析】推导出cos2α=2cos2α﹣1=,从而|cosα|=,进而|tanα|=||=|a﹣b|=.由此能求出结果.
【解答】解:∵角α的顶点为坐标原点,始边与x轴的非负半轴重合,
终边上有两点A(1,a),B(2,b),且cos2α=,
∴cos2α=2cos2α﹣1=,解得cos2α=,
∴|cosα|=,∴|sinα|==,
|tanα|=||=|a﹣b|===.
故选:B.
【点评】本题考查两数差的绝对值的求法,考查二倍角公式、直线的斜率等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.
12.(5.00分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是( )
A.(﹣∞,﹣1] B.(0,+∞) C.(﹣1,0) D.(﹣∞,0)
【分析】画出函数的图象,利用函数的单调性列出不等式转化求解即可.
【解答】解:函数f(x)=,的图象如图:
满足f(x+1)<f(2x),
可得:2x<0<x+1或2x<x+1≤0,
解得x∈(﹣∞,0).
故选:D.
【点评】本题考查分段函数的应用,函数的单调性以及不等式的解法,考查计算能力.
二、填空题:本题共4小题,每小题5分,共20分。
13.(5.00分)已知函数f(x)=log2(x2+a),若f(3)=1,则a= ﹣7 .
【分析】直接利用函数的解析式,求解函数值即可.
【解答】解:函数f(x)=log2(x2+a),若f(3)=1,
可得:log2(9+a)=1,可得a=﹣7.
故答案为:﹣7.
【点评】本题考查函数的解析式的应用,函数的领导与方程根的关系,是基本知识的考查.
14.(5.00分)若x,y满足约束条件,则z=3x+2y的最大值为 6 .
【分析】作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.
【解答】解:作出不等式组对应的平面区域如图:
由z=3x+2y得y=﹣x+z,
平移直线y=﹣x+z,
由图象知当直线y=﹣x+z经过点A(2,0)时,直线的截距最大,此时z最大,
最大值为z=3×2=6,
故答案为:6
【点评】本题主要考查线性规划的应用,利用目标函数的几何意义以及数形结合是解决本题的关键.
15.(5.00分)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|= 2 .
【分析】求出圆的圆心与半径,通过点到直线的距离以及半径、半弦长的关系,求解即可.
【解答】解:圆x2+y2+2y﹣3=0的圆心(0,﹣1),半径为:2,
圆心到直线的距离为:=,
所以|AB|=2=2.
故答案为:2.
【点评】本题考查直线与圆的位置关系的应用,弦长的求法,考查计算能力.
16.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.已知bsinC+csinB=4asinBsinC,b2+c2﹣a2=8,则△ABC的面积为 .
【分析】直接利用正弦定理求出A的值,进一步利用余弦定理求出bc的值,最后求出三角形的面积.
【解答】解:△ABC的内角A,B,C的对边分别为a,b,c.
bsinC+csinB=4asinBsinC,
利用正弦定理可得sinBsinC+sinCsinB=4sinAsinBsinC,
由于0<B<π,0<C<π,
所以sinBsinC≠0,
所以sinA=,
则A=
由于b2+c2﹣a2=8,
则:,
①当A=时,,
解得bc=,
所以.
②当A=时,,
解得bc=﹣(不合题意),舍去.
故:.
故答案为:.
【点评】本体考察的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用及三角形面积公式的应用.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12.00分)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=.
(1)求b1,b2,b3;
(2)判断数列{bn}是否为等比数列,并说明理由;
(3)求{an}的通项公式.
【分析】(1)直接利用已知条件求出数列的各项.
(2)利用定义说明数列为等比数列.
(3)利用(1)(2)的结论,直接求出数列的通项公式.
【解答】解:(1)数列{an}满足a1=1,nan+1=2(n+1)an,
则:(常数),
由于,
故:,
数列{bn}是以b1为首项,2为公比的等比数列.
整理得:,
所以:b1=1,b2=2,b3=4.
(2)数列{bn}是为等比数列,
由于(常数);
(3)由(1)得:,
根据,
所以:.
【点评】本题考查的知识要点:数列的通项公式的求法及应用.
18.(12.00分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.
(1)证明:平面ACD⊥平面ABC;
(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.
【分析】(1)可得AB⊥AC,AB⊥DA.且AD∩AB=A,即可得AB⊥面ADC,平面ACD⊥平面ABC;
(2)首先证明DC⊥面ABC,再根据BP=DQ=DA,可得三棱锥Q﹣ABP的高,求出三角形ABP的面积即可求得三棱锥Q﹣ABP的体积.
【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,
又AB⊥DA.且AD∩AB=A,
∴AB⊥面ADC,∴AB⊂面ABC,
∴平面ACD⊥平面ABC;
(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,
∴BP=DQ=DA=2,
由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,
∴三棱锥Q﹣ABP的体积V=
=××==1.
【点评】本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.
19.(12.00分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量
[0,0.1)
[0.1,0.2)
[0.2,0.3)
[0.3,0.4)
[0.4,0.5)
[0.5,0.6)
[0.6,0.7)
频数
1
3
2
4
9
26
5
使用了节水龙头50天的日用水量频数分布表
日用水量
[0,0.1)
[0.1,0.2)
[0.2,0.3)
[0.3,0.4)
[0.4,0.5)
[0.5,0.6)
频数
1
5
13
10
16
5
(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;
(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)
【分析】(1)根据使用了节水龙头50天的日用水量频数分布表能作出使用了节水龙头50天的日用水量数据的频率分布直方图.
(2)根据频率分布直方图能求出该家庭使用节水龙头后,日用水量小于0.35m3的概率.
(3)由题意得未使用水龙头50天的日均水量为0.48,使用节水龙头50天的日均用水量为0.35,能此能估计该家庭使用节水龙头后,一年能节省多少水.
【解答】解:(1)根据使用了节水龙头50天的日用水量频数分布表,
作出使用了节水龙头50天的日用水量数据的频率分布直方图,如下图:
(2)根据频率分布直方图得:
该家庭使用节水龙头后,日用水量小于0.35m3的概率为:
p=(0.2+1.0+2.6+1)×0.1=0.48.
(3)由题意得未使用水龙头50天的日均水量为:
(1×0.05+3×0.15+2×0.25+4×0.35+9×0.45+26×0.55+5×0.65)=0.48,
使用节水龙头50天的日均用水量为:
(1×0.05+5×0.15+13×0.25+10×0.35+16×0.45+5×0.55)=0.35,
∴估计该家庭使用节水龙头后,一年能节省:365×(0.48﹣0.35)=47.45m3.
【点评】本题考查频率分由直方图的作法,考查概率的求法,考查平均数的求法及应用等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.
20.(12.00分)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.
(1)当l与x轴垂直时,求直线BM的方程;
(2)证明:∠ABM=∠ABN.
【分析】(1)当x=2时,代入求得M点坐标,即可求得直线BM的方程;
(2)设直线l的方程,联立,利用韦达定理及直线的斜率公式即可求得kBN+kBM=0,即可证明∠ABM=∠ABN.
【解答】解:(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,
所以M(2,2)或M(2,﹣2),
直线BM的方程:y=x+1,或:y=﹣x﹣1.
(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),
联立直线l与抛物线方程得,消x得y2﹣2ty﹣4=0,
即y1+y2=2t,y1y2=﹣4,
则有kBN+kBM=+===0,
所以直线BN与BM的倾斜角互补,
∴∠ABM=∠ABN.
【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查韦达定理,直线的斜率公式,考查转化思想,属于中档题.
21.(12.00分)已知函数f(x)=aex﹣lnx﹣1.
(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;
(2)证明:当a≥时,f(x)≥0.
【分析】(1)推导出x>0,f′(x)=aex﹣,由x=2是f(x)的极值点,解得a=,从而f(x)=ex﹣lnx﹣1,进而f′(x)=,由此能求出f(x)的单调区间.
(2)当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,则﹣,由此利用导数性质能证明当a≥时,f(x)≥0.
【解答】解:(1)∵函数f(x)=aex﹣lnx﹣1.
∴x>0,f′(x)=aex﹣,
∵x=2是f(x)的极值点,
∴f′(2)=ae2﹣=0,解得a=,
∴f(x)=ex﹣lnx﹣1,∴f′(x)=,
当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,
∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.
(2)证明:当a≥时,f(x)≥﹣lnx﹣1,
设g(x)=﹣lnx﹣1,则﹣,
当0<x<1时,g′(x)<0,
当x>1时,g′(x)>0,
∴x=1是g(x)的最小值点,
故当x>0时,g(x)≥g(1)=0,
∴当a≥时,f(x)≥0.
【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
22.(10.00分)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.
(1)求C2的直角坐标方程;
(2)若C1与C2有且仅有三个公共点,求C1的方程.
【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.
(2)利用直线在坐标系中的位置,再利用点到直线的距离公式的应用求出结果.
【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.
转换为直角坐标方程为:x2+y2+2x﹣3=0,
转换为标准式为:(x+1)2+y2=4.
(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).
由于该直线与曲线C2的极坐标有且仅有三个公共点.
所以:必有一直线相切,一直线相交.
则:圆心到直线y=kx+2的距离等于半径2.
故:,或
解得:k=或0,(0舍去)或k=或0
经检验,直线与曲线C2没有公共点.
故C1的方程为:.
【点评】本体考察知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,点到直线的距离公式的应用.
[选修4-5:不等式选讲](10分)
23.已知f(x)=|x+1|﹣|ax﹣1|.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.
【分析】(1)去绝对值,化为分段函数,即可求出不等式的解集,
(2)当x∈(0,1)时不等式f(x)>x成立,转化为即|ax﹣1|<1,即0<ax<2,转化为a<,且a>0,即可求出a的范围.
【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,
由f(x)>1,
∴或,
解得x>,
故不等式f(x)>1的解集为(,+∞),
(2)当x∈(0,1)时不等式f(x)>x成立,
∴|x+1|﹣|ax﹣1|﹣x>0,
即x+1﹣|ax﹣1|﹣x>0,
即|ax﹣1|<1,
∴﹣1<ax﹣1<1,
∴0<ax<2,
∵x∈(0,1),
∴a>0,
∴0<x<,
∴a<
∵>2,
∴0<a≤2,
故a的取值范围为(0,2].
【点评】本题考查了绝对值不等式的解法和含参数的取值范围,考查了运算能力和转化能力,属于中档题.
第25页(共25页)