温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
联盟
2023
新高
考高三
核心
模拟
数学
Word
答案
2023届新高考高三核心模拟卷(中)
数学(二)
注意事项:
1.本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.
4.考试结束后,请将本试题卷和答题卡一并上交.
一、选择题:本题共8小题,每小题5分、共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 若,其中,则( )
A. B. C. D.
2. 设集合或,若,则的取值范围是( )
A. 或 B. 或
C. D.
3. 已知函数且的图象过定点,若抛物线也过点,则抛物线的准线方程为( )
A. B.
C D.
4. 若两个向量、的夹角是,是单位向量,,,则向量与的夹角为( )
A. B. C. D.
5. 一种高产新品种水稻单株穗粒数和土壤锌含量有关,现整理并收集了6组试验数据,(单位:粒)与土壤锌含量(单位:)得到样本数据,令,并将绘制成如图所示的散点图.若用方程对与的关系进行拟合,则( )
A. B.
C. D.
6. 展开式中常数项为( )
A. B. C. 1 D. 481
7. 已知是定义域为奇函数,当时,,则不等式的解集为( )
A. B. C. D.
8. 在三棱锥中,和都是边长为的正三角形,当三棱锥的表面积最大时,其内切球的半径是( )
A. B. C. D.
二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9. 设,且,那么( )
A. 有最小值
B. 有最小值
C. 有最小值
D. 有最小值
10. 已知函数,则( )
A. 是偶函数
B. 在区间上单调递增
C. 在上有4个零点
D. 的值域是
11. 已知曲线方程为,曲线关于点的对称曲线为 ,若以曲线与两坐标轴的交点为顶点的四边形面积为,则的值可能为( )
A. B. 1 C. D. 0
12. 如图所示,在长方体中,是的中点,直线交平面于点,则( )
A. 三点共线
B. 的长度为1
C. 直线与平面所成角的正切值为
D. 的面积为
三、填空题:本题共4小题,每小题5分,共20分.
13. 已知双曲线的一个焦点到直线的距离为,则的离心率为__________.
14. 已知为锐角,且,则_______.
15. 已知等比数列的公比为,前项和为,且满足.若对一切正整数,不等式恒成立,则实数的取值范围为__________.
16. 在锐角中,,则中线的取值范围是__________.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17. 已知数列的前项和为,且.
(1)求数列的通项公式;
(2)若数列满足,设,求.
18. 如图,在四边形中,已知.
(1)若,求的值;
(2)若,四边形的面积为4,求的值.
19. 如图所示,正方形与矩形所在平面互相垂直,为线段上一点.
(1)求证:;
(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,说明理由.
20. 现有甲、乙两名运动员争夺某项比赛的奖金,规定两名运动员谁先赢局,谁便赢得全部奖金a元.假设每局甲赢的概率为,乙赢的概率为,且每场比赛相互独立.在甲赢了局,乙赢了局时,比赛意外终止,奖金如何分配才合理?评委给出的方案是:甲、乙按照比赛再继续进行下去各自赢得全部奖金的概率之比分配奖金.
(1)若,求;
(2)记事件A为“比赛继续进行下去乙赢得全部奖金”,试求当时,比赛继续进行下去甲赢得全部奖金的概率,并判断当时,事件A是否为小概率事件,并说明理由.规定:若随机事件发生的概率小于0.06,则称该随机事件为小概率事件.
21. 已知椭圆过点,直线与交于两点,且线段的中点为为坐标原点,直线的斜率为.
(1)求的标准方程;
(2)已知直线与有两个不同交点为轴上一点.是否存在实数,使得是以点为直角顶点的等腰直角三角形?若存在,求出的值及点的坐标;若不存在,请说明理由.
22. 已知函数.
(1)讨论的单调性;
(2)若有两个零点,证明:.
2023届新高考高三核心模拟卷(中)
数学(二)
注意事项:
1.本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.
4.考试结束后,请将本试题卷和答题卡一并上交.
一、选择题:本题共8小题,每小题5分、共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
【1题答案】
【答案】C
【2题答案】
【答案】B
【3题答案】
【答案】B
【4题答案】
【答案】D
【5题答案】
【答案】A
【6题答案】
【答案】C
【7题答案】
【答案】D
【8题答案】
【答案】A
二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
【9题答案】
【答案】ABC
【10题答案】
【答案】AB
【11题答案】
【答案】CD
【12题答案】
【答案】ABD
三、填空题:本题共4小题,每小题5分,共20分.
【13题答案】
【答案】##
【14题答案】
【答案】
【15题答案】
【答案】
【16题答案】
【答案】
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
【17题答案】
【答案】(1)
(2)
【18题答案】
【答案】(1)
(2)
【19题答案】
【答案】(1)证明见解析
(2)存在,
【20题答案】
【答案】(1);
(2)(),事件A是小概率事件,理由见解析.
【21题答案】
【答案】(1)
(2)存在,时,点坐标;当时,点坐标为
【22题答案】
【答案】(1)答案见解析
(2)证明见解析【公众号:一枚试卷君】