激光一电弧复合焊专题机械制造文摘焊接分册激光-MIG复合焊根部驼峰缺陷预测刘秀航,叶广文,黄宇辉,张艳喜,冯桑,高向东(广东工业大学,广东省焊接工程技术研究中心,广东广州510006)摘要:激光-熔化极惰性气体(Meltinertgas,MIG)复合焊过程中容易出现根部驼峰缺陷,为了实现焊接过程根部驼峰缺陷的同步预测,研究根部驼峰缺陷预测的算法并对其预测结果进行分析。采用高速摄像机进行复合焊接过程的实时视觉传感采集,提取焊接过程的正面熔池和匙孔的时序特征信息,并对这些特征信号进行小波包分解(Waveletpacketdecompo-sition,WPD)与重构。应用激光扫描仪获得背部焊缝余高,以此作为驼峰状态标记的依据。再通过长短期记忆(Longshort-termmemory,LSTM)神经网络对焊接过程中根部驼峰状态进行预测。结果表明,WPD-LSTM算法对根部驼峰预测的准确率达到97.85%。相比其它算法,基于焊接过程正面视觉传感时序特征信息的WPD-LSTM算法预测准确率更高,且预测结果具有较高的连续性,有利于实现对焊接过程根部驼峰缺陷的同步检测与控制。关键词:根部驼峰;视觉检测;长短期记忆神经网络;小波包分解中图分类号:TG409Roothumpdefectpredictionforlaser-MIGhybridweldingLiuXiuhang,YeGuangwen,HuangYuhui,ZhangYanxi,FengSang,GaoXiangdong(GuangdongProvincialWeldingEngineeringTechnologyResearchCenter,GuangdongUniversityofTechnology,Guangzhou510006,Guangdong,China)Abstract:Theroothumpdefectiseasytoappearinthelaser-MIGcompositeweldingprocess.Inordertoreal-izethesimultaneouspredictionoftheroothumpdefectintheweldingprocess,thispaperstudiesthealgorithmofroothumpdefectpredictionandanalyzesthepredictionresultsofdifferentalgorithm.Thereal-timevisualsensinginformationofcompositeweldingprocessiscarriedoutbyahigh-speedcamera,thetimeseriescharac-teristicinformationofthefrontweldpoolandthekeyholeintheweldingprocessisextracted,andthecharacter-isticssignalsaredecomposedandreconstructedbywaveletpacketdecomposition(WPD).Then,theresidualheightofthebackweldisobtainedbyalaserscanner,whichisusedasthebasisformarkingthehumpstatus.Longshort-termmemory(LSTM)neuralnetworkwasusedtopredictthestatusofroothumpintheweldingprocess.ExperimentalresultsshowthattheaccuracyofWPD-LSTMalgorithmfor...