多回波多参数定量磁共振成像(qMRI)是一种定量MRI[1]的成像技术,它利用多回波图像获得多对比度图像来量化组织性质。与广泛使用的定性MRI有很大不同的是,定量MRI通过获得多对比度图像来重建参数图,如定量质子密度加权(PDW)、T1弛豫时间等组织参数映射、定量T2*Map[2,3]映射等。这种多参数图可以提供关于医学图像解剖结构特征的互补的定量信息,为特定的组织组成和微观结构提供更多的见解。然而,多参数MRI需要对解剖结构进行多次成像,通过多个翻转角(FA)、回声时间(TE)和重复时间(TR)产生不同的对比进行参数量化。对所有组织类型的时间信号演化的基于物理模型的级联生成对抗网络加速定量多参数磁共振成像基于物理模型的级联生成对抗网络加速定量多参数磁共振成像刘羽轩,楚智钦,张煜南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东广州510515Physicalmodel-basedcascadedgenerativeadversarialnetworksforacceleratingquantitativemulti-parametricmagneticresonanceimagingLIUYuxuan,CHUZhiqin,ZHANGYuSchoolofBiomedicalEngineering,SouthernMedicalUniversity//GuangdongProvincialKeyLaboratoryofMedicalImageProcessing,Guangzhou510515,China摘要:目的探讨基于物理模型的级联生成对抗网络使用原始的多回波多线圈k空间数据加速定量多回波多参数磁共振成像方法的可行性分析与解释。方法提出了一种基于物理模型的级联生成对抗网络,利用多域信息联合训练以及通过系统矩阵学习图像重建所需的关键参数,并自适应地优化k空间生成器和图像生成器结构来增强图像特征信息以获得高质量的重建图像。使用原始的多回波多线圈k数据加速多对比度多参数磁共振图像成像。提出了基于物理驱动的深度学习重建方法,通过建立系统矩阵函数而不是直接通过模型端到端训练的方式来增加模型的泛化能力和提高模型性能。结果在整体回波图像质量评价方面,该模型在80例测试集上的重建图像的平均PSNR值为34.13,SSIM为0.965,NRMSE为0.114,大幅度优于本文的其它对比方法。在多对比度多参数图像重建方面,该模型评估的PDW、T1W以及T2*Map的PSNR分别为38.87、35.62和34.38,在定量上也显著优于其它对比方法,并拟合出更为清晰的大脑灰质、白质和脑脊液特征。除此以外,在重建时间相差不到10%的前提下与现有的方法相比,本研究的方法对PSNR、SSIM和NRMSE的指标提升最高可达到20%。结论相比现有的方法,基于物理模型的级联生成对抗网络方...