山东农业大学学报(自然科学版),2023,54(3):413-419VOL.54NO.32023JournalofShandongAgriculturalUniversity(NaturalScienceEdition)doi:10.3969/j.issn.1000-2324.2023.03.012基于无人机高光谱的荒漠草原地表微斑块分类研究王胜利1,郝飞2,毕玉革1,高新超1,金额尔都木吐1,杜健民1*1.内蒙古农业大学机电工程学院,内蒙古呼和浩特0100182.呼和浩特职业学院机械与电力工程系,内蒙古呼和浩特010070摘要:草原荒漠化会严重破坏草原生态平衡,荒漠草原地物分类已成为草原监测管理的关键问题。本文通过构建无人机高光谱遥感系统,解决了原有草原调查方式上效率低与空间分辨率不足问题;构建高分辨率图像卷积神经网络(HR-CNN)解决了荒漠草原地表微斑块精细化分类问题;与ResNet34、GoogLeNet、常规卷积神经网络模型进行对比,总体上HR-CNN模型表现更优,总体分类精度与Kappa系数分别为98.27%、96.63。在相同迭代次数条件下,模型构建速度上,HR-CNN相较其它三类模型分别提升65.88%、65.71%、13.77%。模型内存占有量上,HR-CNN相较其它三类模型分别降低92.11%、79.21%、43.64%。该网络模型是轻量化卷积在荒漠草原地物分类研究中的有效探索,可为后续草原地物分类提供新思路。关键词:荒漠草原;无人机高光谱遥感;地物分类中图法分类号:S812.3;TP751文献标识码:A文章编号:1000-2324(2023)03-0413-07SurfaceMicro-patchesClassificationonDesertGrasslandsBasedonUAVHyperspectralDataWANGSheng-li1,HAOFei2,BIYu-ge1,GAOXin-chao1,JINE-erdumutu1,DUJian-min1*1.CollegeofMechanicalandElectricalEngineering/InnerMongoliaAgriculturalUniversity,Hohhot010018,China2.DepartmentofMechanicalandElectricalEngineering/HohhotVocationalCollege,Hohhot010070,ChinaAbstract:Theecologicalbalanceofgrasslandsisseriouslyaffectedbygrasslanddesertification,andtheclassificationofdesertgrasslandlandcoverhasbecomeakeyissueingrasslandmonitoringandmanagement.Inthisstudy,theproblemoflowefficiencyandinsufficientspatialresolutionintraditionalgrasslandinvestigationmethodswasaddressedbybuildinganunmannedaerialvehiclehyperspectralremotesensingsystem.Theissueoffine-grainedclassificationofsurfacemicro-patchesindesertgrasslandswasalsotackledbyconstructingahigh-resolutionimageconvolutionalneuralnetwork(HR-CNN).ComparedwithResNet34,G...