2023年8月JournalonCommunicationsAugust2023第44卷第8期通信学报Vol.44No.8基于单向流模型的自适应张量链式学习算法马宝泽1,2,李国军1,2,邢隆1,2,叶昌荣1,2(1.重庆邮电大学光电工程学院,重庆400065;2.重庆邮电大学超视距可信信息传输研究所,重庆400065)摘要:针对单向流模型中高阶张量在线分解问题,研究了一种自适应张量链式(TT)学习算法。首先,推导出单向流增量仅改变时序TT核的维度;然后,引入遗忘因子和正则项构造指数权重最小二乘目标函数;最后,利用块坐标下降学习策略分别估计时序和非时序TT核。对所提算法在增量大小、TT秩、噪声和时变强度等方面分别进行了验证,结果表明,所提算法的平均相对误差和运算时间均小于对比算法,并在视频自适应分析中表现出优于对比算法的张量切片重构能力。关键词:自适应学习算法;张量链式分解;单向流模型;泛在数据流中图分类号:TN911.6文献标志码:ADOI:10.11959/j.issn.1000−436x.2023154Adaptivetensortrainlearningalgorithmbasedonsingle-aspectstreamingmodelMABaoze1,2,LIGuojun1,2,XINGLong1,2,YEChangrong1,21.SchoolofOptoelectronicEngineering,ChongqingUniversityofPostsandTelecommunications,Chongqing400065,China2.LabofBeyondLoSReliableInformationTransmission,ChongqingUniversityofPostsandTelecommunications,Chongqing400065,ChinaAbstract:Anadaptivetensortrain(TT)learningalgorithmfortheonlinedecompositionproblemofhigh-ordertensorsinsingle-aspectstreamingmodelwasinvestigated.Firstly,itwasdeducedthatsingle-aspectstreamingincrementonlychangesthedimensionoftemporalTTcore.Secondly,theforgettingfactorandregularizationitemwereintroducedtoconstructtheobjectivefunctionofexponentiallyweightedleast-squares.Finally,theblock-coordinatedescentlearningstrategywasusedtoestimatethetemporalandnon-temporalTTcoretensorsrespectively.Simulationresultsdemonstratethattheproposedalgorithmisvalidatedintermsofincrementsize,TT-rank,noiseandtime-varyingintensity,theaveragerelativeerrorandoperationtimearesmallerthanthatofthecomparisonalgorithms.Thetensorslicereconstructionabili-tyissuperiorthanthatofthecomparisonalgorithmsinthevideoadaptiveanalysis.Keywords:adaptivelearningalgorithm,tensortraindecomposition,...