情报学报2023年8月第42卷第8期JournaloftheChinaSocietyforScientificandTechnicalInformation,Aug.2023,42(8):967-979基于RDF的语义知识超图存储研究宋雪雁,张伟民,张祥青(吉林大学商学与管理学院,长春130012)摘要针对资源描述框架(resourcedescriptionframework,RDF)存储效率低、难以存储复杂语义关系等问题,本研究引入超图理论,探索一种融合超图理论的语义知识图谱存储模型,以期实现RDF对超图数据的存储,为其他学者利用RDF构建知识超图提供参考。本研究构建了适用于超图结构的语义知识超图(semanticknowledgehypergraph,SKH)模型,与语义知识图谱(semanticknowledgegraph,SKG)进行对比,分析其存储效率与复杂语义关系存储能力,并论述其在知识检索、知识推理、数据转换与可视化等方面的应用。研究结果发现,SKH模型具有比SKG更优的存储效率与复杂语义关系存储能力,SKG的知识检索和知识推理方式也适用于SKH模型,SKH模型数据在一定程度上能与SKG数据相互转换,SKH模型具有更加多元且表意丰富的可视化方式,对于信息资源管理领域复杂语义存储具有重要意义。关键词RDF;语义知识超图;知识存储;超图理论StorageofSemanticKnowledgeHypergraphBasedonaResourceDescriptionFrameworkSongXueyan,ZhangWeiminandZhangXiangqing(SchoolofBusinessandManagement,JilinUniversity,Changchun130012)Abstract:Toaddressthelowstorageefficiencyanddifficultyinstoringcomplexsemanticrelationshipsinaresourcede‐scriptionframework(RDF),thehypergraphtheoryisintroducedtoexploreasemanticknowledgegraphstoragemodelthatintegratesthehypergraphtheorytorealizethestorageofhypergraphdatabasedontheRDFandprovideareferenceforotherscholarstousetheRDFtobuildknowledgehypergraphs.Weconstructasemanticknowledgehypergraph(SKH)modelsuitableforhypergraphs,analyzeitsstorageefficiencyandstoragecapacityofcomplexsemanticrelationsbycom‐paringitwithasemanticknowledgegraph(SKG),anddiscussitsapplicationsinknowledgeretrieval,knowledgereason‐ing,dataconversion,andvisualization.WeestablishedthattheSKHmodelhasbetterstorageefficiencyandcomplexse‐manticrelationshipstoragecapacitythantheSKG.ThemethodsofknowledgeretrievalandknowledgereasoningofSKGarealsoapplicabletoSKH.TheSKHmodeldatacanbetransfor...