文章编号:1003-0530(2023)08-1465-13第39卷第8期2023年8月信号处理JournalofSignalProcessingVol.39No.8Aug.2023基于K-L散度和深度聚类的自适应EEGNet-T分布解码算法研究李梦凡1,2,3宋智勇1,2,3郭苗苗1,2,3邓豪东1,2,3张鹏飞1,2,3徐桂芝1,2,3(1.河北工业大学生命科学与健康工程学院省部共建电工装备可靠性与智能化国家重点实验室,天津300132;2.河北工业大学生命科学与健康工程学院河北省生物电磁与神经工程重点实验室,天津300132;3.河北工业大学生命科学与健康工程学院天津市生物电工与智能健康重点实验室,天津300132)摘要:脑机接口是脑与外界不通过神经或肌肉建立的交流通路,脑电解码通过归类脑电特征解读输出大脑意图,是影响性能的关键之一。由于脑电信号存在非平稳特性,即使在同一实验过程中脑电信号的特征也会随时间发生变化,导致事先训练好的解码模型精度常常会随时间逐渐降低,不利于脑机接口的长期稳定运行。本研究提出基于K-L散度和深度聚类的自适应EEGNet-T分布解码算法,根据脑电特征变化前后T分布的K-L散度评估脑电的非平稳性并构建基于平稳性差值的目标函数,并以此目标函数调整EEGNet网络参数通过改变非线性映射的方式缩小平稳性差值,从而动态调整融合深度网络与聚类的EEGNet-T分布模型,实现对非平稳脑电的自适应解码。10名被试参与了视觉-听觉的脑机接口实验,并进行较长时间的脑电解码预测。与传统算法相比,本算法在连续128个试次组的任务中获得最高的平均准确率87.85%(p<0.05),并且在前半段实验和后半段实验对比中表现出最强的稳定性,表明该算法能够通过深度网络调整数据特征分布更好地适应脑电信号特征变化,具有更强的解码稳定性,能够保证脑机接口长时间工作的解码精度,为脑机接口实用化提供基础。关键词:脑机接口;脑电非平稳性;自适应算法;深度聚类;EEGNet;T分布中图分类号:R318.04文献标识码:ADOI:10.16798/j.issn.1003-0530.2023.08.012引用格式:李梦凡,宋智勇,郭苗苗,等.基于K-L散度和深度聚类的自适应EEGNet-T分布解码算法研究[J].信号处理,2023,39(8):1465-1477.DOI:10.16798/j.issn.1003-0530.2023.08.012.Referenceformat:LIMengfan,SONGZhiyong,GUOMiaomiao,etal.AnadaptiveEEGNet-TdistributiondecodingalgorithmbasedonK-Ldivergenceanddeepclustering[J].JournalofSignalProcessing,2023,39(8):1465-1477.DOI:10.16798/j.issn.1003-0530.2023....