基于改进灰狼算法的多任务优化算法史光伟,王启任(天津工业大学电子与信息工程学院,天津300387)摘要:针对已有多任务优化算法寻优精度受限、计算时间成本过高等问题,提出一种基于改进灰狼算法的多任务优化算法(improvedgreywolfalgorithmbasedmultitaskoptimizationalgorithm,IGWMTO)。该算法采用灰狼算法代替典型多任务算法中的遗传算法,计算个体的因素等级和技能因子实现狼群分类,并以此更新个体隶属任务,引入扰动因子和动态权重改善狼群个体的更新方式。仿真测试结果表明:相比于传统多任务优化算法,所提算法在4个优化问题上的寻优精度的提升均超过了4.8%,计算耗时降低了70%以上。关键词:多任务优化;群体智能优化算法;灰狼算法;寻优精度中图分类号:TP18文献标志码:A文章编号:员远苑员原园圆源载(圆园23)园5原园园81原06收稿日期:2022-06-02基金项目:天津市自然科学基金资助项目(19JCQNJC03300);天津市研究生科研创新项目(2020TJSS014)通信作者:史伟光(1985—),男,博士,副教授,主要研究方向为射频定位,群体智能感知计算。E-mail:shiweiguang@tiangong.edu.cnImprovedgreywolfalgorithmbasedmultitaskoptimizationalgorithmSHIWeiguang,WANGQiren(SchoolofElectronicsandInformationEngineering,TiangongUniversity,Tianjin300387,China)Abstract:Aimingattheproblemsoflimitedoptimizationaccuracyandhighcomputationaltimeofexistingmulti-taskopti鄄mization渊MTO冤algorithms袁animprovedgreywolfalgorithmbasedmultitaskoptimizationalgorithm渊IGWM鄄TO冤isproposed袁whichutilizesthegreywolfalgorithminsteadofthegeneticalgorithminthetypicalmulti-taskoptimizationalgorithm.Thefactorlevelandskillfactoroftheindividualarecalculatedtoachievewolfgroupclas鄄sificationandupdatetheindividualmembershiptask.Then袁thedisturbancefactorsanddynamicweightarein鄄troducedtoimprovetheupdatemethodofindividualwolves.Thesimulationresultsshowthat袁comparedwiththetraditionalmulti-taskoptimizationalgorithm袁theproposedalgorithmimprovestheoptimizationaccuracybymorethan4.8%onallfouroptimizationproblems袁andthecomputationaltimereducesbymorethan70%.Keywords:multi-taskoptimization曰swarmintelligenceoptimizationalgorithm曰graywolfalgorithm曰optimizationaccuracy...