温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
基于
改进型
控制
PMSM
速度
湖北汽车工业学院学报Journal of Hubei University of Automotive Technology第 37 卷第 2 期2023 年 6 月Vol.37 No.2Jun.2023收稿日期:2022-07-09;修回日期:2023-02-27基金项目:湖北省揭榜制科技项目(2021BECO02)第一作者:胡文涛(2000-),男,硕士生,从事电机控制设计方面的研究。E-mail:huwentao_通信作者:张金亮(1987-),男,副教授,从事新能源智能网联汽车、电机驱动与控制方面的研究。E-mail:qcxy-永磁同步电机(permanent magnet synchronousmotor,PMSM)具有结构简单、能量损耗小、功率因数高等优点,被广泛应用于新能源汽车、航天航空、工业生产等领域1。传统PMSM矢量控制采用PI控制算法,而PI算法存在着对参数变化敏感、抗扰动能力差和稳定性不足等问题。随着控制算法及理论的发展,非线性自抗扰控制被提出,该算法具有很好的控制性能,但在参数整定方面存在一定困难2。线性自抗扰控制器(liner active disturbancerejection control,LADRC)参数整定简单、扰动跟踪doi:10.3969/j.issn.1008-5483.2023.02.010基于改进型自抗扰控制的PMSM速度控制胡文涛,简炜,张金亮,柯贤伟(湖北汽车工业学院 电气与信息工程学院,湖北 十堰 442002)摘 要:针对永磁同步电机伺服系统中存在的速度控制精度不高、抗负载扰动能力差等问题,提出改进型自抗扰控制策略。设计嵌合降阶扩张状态观测器,内环观测广义扰动,外环观测剩余扰动。设计模糊自抗扰速度控制器,基于MATLAB/Simulink建立模型。仿真结果表明:基于改进型自抗扰的控制策略能够有效的改善系统的控制性能,对速度、负载变化具有较强的鲁棒性。关键词:永磁同步电机;自抗扰控制;模糊控制;降阶扩张状态观测器中图分类号:TM301.2文献标识码:A文章编号:1008-5483(2023)02-0047-05PMSM Speed Control Based on a Modified ActiveDisturbance Rejection StrategyHu Wentao,Jian Wei,Zhang Jinliang,Ke Xianwei(School of Electrical and Information Engineering,Hubei University of Automotive Technology,Shiyan 442002,China)Abstract:The servo system of a permanent magnet synchronous motor(PMSM)has poor speed controlaccuracy and poor anti-load disturbance capability.In order to address these problems,an improved active disturbance rejection control(ADRC)strategy was proposed.Nested reduced-order extended stateobservers were designed.Specifically,the inner-loop reduced-order extended state observer observedthe generalized disturbance,and the outer-loop reduced-order extended state observer observed the residual disturbance.The fuzzy active disturbance rejection speed controller was designed.The modelwas built based on MATLAB/Simulink platform.The results show that the modified active disturbancerejection control strategy can effectively improve the control performance of the system and is more robust to speed and load variations.Key words:PMSM;ADRC;fuzzy control;reduced-order extended state observer2023年6月湖北汽车工业学院学报性能较好,易于工程应用3。为提高扩张状态观测器观测性能,文献 4 提出卡尔曼滤波器作为外扰观测器观测负载扰动,减少扩张状态观测器观测负担以及噪声影响,但增加了系统计算的复杂程度。文献 5 提出将模型信息加入扩张状态观测器,以此降低扩张状态观测器负担。提高了扰动估计精度,但增加了对系统模型信息依赖程度,系统参数摄动情况下补偿效果较弱。针对自抗扰控制器参数整定,文献 6 使用神经网络整定ADRC参数,提高了控制精确度,但运算量过大导致其很难在短时间做出灵敏的反应去及时选择最优参数。文献 7使用粒子群算法整定ADRC,粒子群算法可快速搜索到最优参数,但有陷入局部最优的可能性。为避免以上问题,文中用嵌套的降阶扩张状态观测器共同观测扰动,在保留结构简单、不依赖系统模型的基础上提高观测性能。误差控制使用性能更好的非线性误差反馈控制率,并使用模糊算法实时对控制率的参数进行调节。以PMSM为被控对象,对速度环进行控制,通过仿真验证该算法的正确性。1永磁同步电机数学模型为了简化分析,在建立电机数学模型时一般忽略磁路饱和,不考虑电机中的涡流和磁滞损耗8。在d-q同步旋转坐标系下的电机机械运动方程为Jdmdt=Te-TL-Bm(1)Te=1.5Pn|fiq+(Ld-Lq)idiq(2)式中:m为机械角速度;Te为电磁力矩;B为阻尼系数;TL为负载转矩;Ld、Lq为d-q坐标系下的定子电感。电机定子磁链方程为d=Ldid+f,q=Ldiq(3)式中:f为磁链。文中研究对象为表贴式永磁同步电机,因此Ld与Lq相等。采用id=0的矢量控制方法,得到同步旋转坐标系下的机械运动方程为dmdt=1.5pnfJiq-TLJ-BmJ(4)2基于线性自抗扰速度环控制器2.1 传统线性自抗扰控制器传统线性ADRC由跟踪微分器(tracking differentiator,TD)、线性扩张状态观测器(linear expansion state observer,LESO)和线性状态误差反馈控制律(linear state error feedback,LSEF)组成9。TD给参考值安排过渡过程并提取该信号各阶微分,减小超调和削弱输入噪声影响。LESO是LADRC的核心,主要估计系统状态和广义扰动,广义扰动为异于标准型部分的内部扰动和外部扰动。LSEF对系统状态和扰动进行状态反馈,将被控对象还原为标准的积分串联型,实现扰动的主动抑制和消减。为设计自抗扰控制器,将电机运动方程简化为 m=b0u+f,b0=3pnf2Jf=(b-b0)u-BmJ-TLJ(5)式中:b为控制增益参考值;b0为实际控制增益;f为广义总扰动;u为控制输出i*q。跟踪微分器设计为e1=v-*m,v=rfal(e1,1,1)(6)fal(,)=|sgn(),|/1-,|(7)式中:*m为给定信号参考值;r为TD跟踪速度因子;v为跟踪信号输入。二阶线性扩张状态观测器的状态空间表达式如下:z1z2=-11-20 z1z2+b0102 x1x2(8)式中:z1为m的跟踪值;z2为扰动的观测值;12为观测器增益矩阵。根据文献 10 运用“带宽法”配置参数1、2。选取观测器带宽为o,则参数1、2可配置为1=2o,2=2o(9)比例误差反馈控制率设计为u0=Kpe2,u=u0-z2b0,e2=v-z1(10)式中:Kp为比例调节因子。由于z2约等于f,系统可近似为如下形式:y=f+b0=f+u0-z2=u0(11)由于式(5)中的扰动已经通过LESO估计并补偿,因此控制系统可以被近似认为串联积分器标准形式。线性自抗扰速度控制器结构如图1所示。*mTDLSEF被控对象e2vu01/b0ub0z2z1LESOy+-+-图1 传统线性ADRC速度环控制结构框图2.2 降阶自抗扰速度环控制器LESO主要功能为估计总扰动和跟踪反馈信 48第37卷 第2期号,而永磁同步电机速度环反馈实际速度信号可以由传感器直接测出。改写LESO中涉及速度反馈信号对应的结构,构建降阶线性扩张状态观测器(reduced linear extended state observer,RLESO)只对总扰动进行估计11。令RLESO带宽为c,由式(8)推导为z2=-cz2-cb0u+cy(12)为避免直接对输出量y直接微分而带来大量噪声,定义变量:z=z2-cy(13)则式(12)可改写为z=-cz-2cy-cb0u,z2=z+cy(14)根据式(8)、式(10)和式(14)可得方程组:y=()b0u+fsu=Kp(v-y)-z2b0z2=-b0s+1v+1(s+1)(s+2)fs(15)由式(14)可推导出y与v、f的关系式:y=1s+1v+1(s+1)(s+2)fs1=Kp,2=c(16)因此RLESO的收敛条件为f可微分且导数有界。3改进型自抗扰速度环控制器3.1 嵌套自抗扰控制器依据带宽法整定参数的LESO具有带宽越大跟踪性能越快的特性,但较大带宽会放大噪声12。为此一般选取适当大小的带宽以平衡抗扰和抗噪性能,但同时也限制了LADRC在系统中的性能,并且当系统总扰动过大时则LESO会产生观测误差,即剩余扰动13。为解决该问题,提出嵌套降阶扩张状态观测器,其基本结构由并行的RLESO构成。内环RLESO估计并补偿广义扰动,外环RLESO估计并补偿内环RLESO由于带宽限制等原因产生的剩余扰动。2个RLESO的增益可以独立调整,具有足够带宽的内环RLESO可以有效地补偿不确定性扰动,不会产生过大的噪声。嵌合降阶扩张状态观测器仅有b0、外环RESO带宽c1、内环RESO带宽c2共 3 个待定参数,整定较为简便。针对传统LADRC采用线性反馈存在的误差收敛速度不足的问题。文中选择具有更好的鲁棒性和适应性的非线性误差反馈控制律(nonlinear stater error feedback,NLSEF),NLSEF设计为u0=Kpfal(,2,2)u=Kpfal(,2,2)-zf1b0-zf2b0(17)式中:Kp为速度调节因子;zf1、zf2分别为外环RLESO1和内环RLESO2对扰动的估计。综上所述,改进型自抗扰控制器结构包含跟踪微分器、非线性误差反馈控制率、嵌合降阶扩张状态观测器构成。其结构如图2所示。*mTDNLESF被控对象e2vu0u+-+-+-1/b0b01/b0b0外环RLESO内环RLESOZf2Zf1y图2 嵌合ADRC结构框图3.2 模糊自抗扰控制的设计非线性状态反馈控制率以系统的状态及内外扰动的反馈控制输出量,其参数选择直接影响控制性能。NLSEF中的速度调节因子Kp若直接选取固定值,很难满足速度曲线变化和稳态精度需求14。为了精简改进型自抗扰控制器待整定参数,使用模糊控制整定参数Kp。选择速度误差e和误差变化率ec作为输入变量,K为输出量,其中e和ec的论域均为-6,6,K的论域为 0,6。输入输出的模糊子集为PB,PM,PS,ZO,NS,NM,NB,对应模糊规则为正大,正中,正小,零,负小,负中,负大。隶属度函数采用三角形函数,推理模型选择Mamdani型,模糊规则如表1所示。文中设计改进型自抗扰控制包括嵌套降阶扩张状态观测器的自抗扰控制和模糊控制参数自整定。仿真图如图3所示。胡文涛,等:基于改进型自抗扰控制的PMSM速度控制表1 参数K的模糊控制规则eNBNMNSZOPSPMPBecNBPBPBPBZONSZOZONMPLPBPMPSZOZOPMNSPMPMPSPMZOPSPMZOPMPSPSPBPSPMPMPSPSPSZOPMPSPMPBPMPSZONSPSPMPMPBPBZOZONSZOPMPBPB 492023年6月湖北汽车工业学院学报4仿真实验以及分析为验证改进型ADRC转速控制器的性能,在MATLAB/Simulink中建立仿真实验模型,分别对PI控制器、ADRC控制器以及改进型ADRC控制器进行速度跟踪实验和负载突变实验。电机参数:定子电阻为2.875,转动惯量为0.003 kgm2,极对数为4,Ld、Lq均为8.5 mH,f为0.175 Wb。文中设定改进型自抗扰控制器内外环RLESO带宽参数均小于传统线性自抗扰控制器LESO带宽。4.1 速度跟踪实验速度跟踪实验分为转速突变跟踪实验及电机转速反转实验。速度跟踪实验:在电机空载的情况下,设定初始参考速度为800 rmin-1,0.2 s时参考速度突变为1500 rmin-1,0.4 s时将参考速度突降为1000 rmin-1,仿真结果见图4a。电机转速反转实验:为了测试改进型ADRC的鲁棒性,系统参数不变,设定初试转速为1000 rmin-1,在0.3 s速度反转到-1000 rmin-1,仿真结果如图4b所示。由图4a可知,PI控制和改进型ADRC均有较好响应速度,但PI控制的速度跟踪存在超调,且PI控制需要较长时间调节才能收敛至参考速度。ADRC和改进型ADRC均实现无超调跟踪,而后者能够更快地收敛至参考速度。由图4b可知ADRC下的电机反转时无明显超调,改进型ADRC具有较好的快速性。IqrefIqidWeuq*q轴电流调节器IdrefIdiqWeud*d轴电流调节器ValphaVbetapulseSVPWMABCAlphaBetaClarkAlphaBetaTheDQPlarkgABC+-VdcmTeTheIabcWmMuxmABCTmContinuousWrefyiq改进型ADRCVqVdUalphaUbetaAnti_Park图3 改进型ADRC闭环控制系统Simulink仿真框图1600120080040000.10.20.30.40.50.60时间/s转速/(rmin-1)a 电机转速升降10005000-500-1000转速/(rmin-1)0.10.20.30.40.50.60时间/sb 电机正反转改进型ADRCADRCPI参考值图4 不同工况转速跟踪实验曲线4.2 负载转矩突变仿真实验为了验证控制策略在负载突变时的适应性,设计仿真试验:电机空载启动,设定稳态转速为1000 rmin。当电机达到稳态转速后,0.2 s时加5 Nm的负载转矩。转速达到稳定之后,0.4 s时将5 Nm的负载卸去,得到系统的负载突变的1.54.5 s速度响应曲线和0.20.4 s速度响应误差曲线如图5所示。由图5a可知,负载突变产生的扰动对整个系统具有影响较大。负载突变时PI控制在负载突变速度超调量最大,可达 3.29%。传统线性ADRC在负载突变时速度超调量最大达到2.69%,改进型 ADRC 负载突变速度超调量最大仅为1.13%。在负载扰动产生之后,PI控制需要最长时间调节恢复,改进型ADRC调节时间小于传统线性 50第37卷 第2期ADRC。由图5b可知,PI控制的稳态误差波动较大。传统线性ADRC和改进型ADRC稳态速度波动都相对较小,改进型ADRC稳态误差最小。5结论设计了非线性误差控制率和降阶扩张状态观测器的复合结构,采用嵌合降阶扩张状态观测器代替传统线性扩张状态观测器,使用模糊算法对误差反馈控制率参数实时整定。设计的控制策略能够有效解决转速快速响应性和无超调间的矛盾,速度超调小,能更快达到稳定且稳态精度更高,具有较强鲁棒性。嵌合降阶扩张状态观测器能在带宽限制下仍有较好的观测性能。参考文献:1袁雷,胡冰新,魏克银.现代永磁同步电机控制原理及MATLAB仿真 M.北京:北京航空航天大学出版社,2016.2韩京清.从PID技术到“自抗扰控制”技术 J.控制工程,2002,9(3):13-18.3 高志强.自抗扰控制思想探究 J.控制理论与应用,2013,30(12):1498-1510.4Zhang J L,Chen Y F,Gao Y,et al.Cascade ADRC SpeedControl Base on FCS-MPC for Permanent Magnet Synchronous Motor J.Journal of Circuits,Systems and Computers,2021,30(11):2150202.5盖江涛,黄庆,黄守道,等.基于模型补偿的永磁同步电机自抗扰控制 J.浙江大学学报(工学版),2014,48(4):581-588.6金爱娟,陈昌泽,李少龙.基于神经网络优化的交流自抗扰伺服系统控制 J.包装工程,2021,42(19):220-231.7黄文俊,白瑞林,朱渊渤.基于改进CPSO算法的自抗扰位置伺服系统优化设计 J.火力与指挥控制,2019,44(4):53-59,64.8柯贤伟,张金亮,彭国生,等.基于改进粒子群算法的PMSM多参数辨识 J.湖北汽车工业学院学报,2021,35(1):60-64.9李真,王帆,王冉珺.永磁同步电机的自抗扰控制器参数自整定 J.计算机测量与控制,2021,29(5):92-96.10Gao Z.Scaling and Parameterization Based ControllerTuningC/American Control Conference,2003.Proceedings of the 2003.2003.11李杰,齐晓慧,万慧等.自抗扰控制:研究成果总结与展望 J.控制理论与应用,2017,34(3):281-295.12韩丁,丁俊.基于 TLESO/HLESO/RLESO 的 PMSM 调速系统研究 J.工程设计学报,2018,25(1):94-102.13Krzysztof,akomy,.Cascade Extended State Observerfor Active Disturbance Rejection Control Applicationsunder Measurement Noise J.ISA Transactions,2021,109:1-10.14远绍羊,张政,熊志强,等.基于模糊自抗扰的永磁同步电机转矩控制 J.微特电机,2017,45(12):57-60,64.胡文涛,等:基于改进型自抗扰控制的PMSM速度控制104010301020101010009909809700.15时间/s转速/(rmin-1)0.200.250.300.350.400.45a 转速跟踪曲线3025201510500.20时间/s转速误差/(rmin-1)0.250.300.350.40b 转速误差曲线改进型ADRCADRCPI图5 负载突变时转速曲线 51