温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
The Art of Electronics 3rd ed 【2015
The
Art
of
Electronics
3rd
ed
2015
The
rd
2015
THIRDEDITIONTHEOFE L E C T R O N I C SPAUL HOROWITZWINFIELD HILLThe Art of ElectronicsThird EditionAt long last,here is the thoroughly revised and updated,and long-anticipated,third edition of the hugely successfulThe Art of Electronics.Widely accepted as the best single authoritative text and reference on electronic circuit design,both analog and digital,the first two editions were translated into eight languages,and sold more than a million copiesworldwide.The art of electronics is explained by stressing the methods actually used by circuit designers a combinationof some basic laws,rules of thumb,and a nonmathematical treatment that encourages understanding why and how acircuit works.Paul Horowitz is a Research Professor of Physics and of Electrical Engineering at Harvard University,where in 1974he originated the Laboratory Electronics course from which emerged The Art of Electronics.In addition to his work incircuit design and electronic instrumentation,his research interests have included observational astrophysics,x-ray andparticle microscopy,and optical interferometry.He is one of the pioneers of the search for intelligent life beyond Earth(SETI).He is the author of some 200 scientific articles and reports,has consulted widely for industry and government,and is the designer of numerous scientific and photographic instruments.Winfield Hill is by inclination an electronics circuit-design guru.After dropping out of the Chemical Physics graduateprogram at Harvard University,and obtaining an E.E.degree,he began his engineering career at Harvards ElectronicsDesign Center.After 7 years of learning electronics at Harvard he founded Sea Data Corporation,where he spent 16 yearsdesigning instruments for Physical Oceanography.In 1988 he was recruited by Edwin Land to join the Rowland Institutefor Science.The institute subsequently merged with Harvard University in 2003.As director of the institutes ElectronicsEngineering Lab he has designed some 500 scientific instruments.Recent interests include high-voltage RF(to 15kV),high-current pulsed electronics(to 1200A),low-noise amplifiers(to sub-nV and pA),and MOSFET pulse generators.This page intentionally left blankTHE ART OF ELECTRONICSThird EditionPaul HorowitzHARVARD UNIVERSITYWinfield HillROWLAND INSTITUTE AT HARVARD32 Avenue of the Americas,New York,NY 10013-2473,USACambridge University Press is part of the University of Cambridge.It furthers the Universitys mission by disseminating knowledge in the pursuit ofeducation,learning,and research at the highest international levels of excellence.www.cambridge.orgInformation on this title:www.cambridge.org/9780521809269 Cambridge University Press,1980,1989,2015This publication is in copyright.Subject to statutory exceptionand to the provisions of relevant collective licensing agreements,no reproduction of any part may take place without the writtenpermission of Cambridge University Press.First published 1980Second edition 1989Third edition 2015Printed in the United States of AmericaA catalog record for this publication is available from the British Library.ISBN 978-0-521-80926-9 HardbackCambridge University Press has no responsibility for the persistence oraccuracy of URLs for external or third-party Internet websites referred toin this publication and does not guarantee that any content on suchwebsites is,or will remain,accurate or appropriate.7th printing 2016 with correctionsTo Vida and AvaThis page intentionally left blankIn Memoriam:Jim Williams,19482011This page intentionally left blankCONTENTSList of TablesxxiiPreface to the First EditionxxvPreface to the Second EditionxxviiPreface to the Third EditionxxixONE:Foundations11.1Introduction11.2Voltage,current,and resistance11.2.1Voltage and current11.2.2Relationship between voltageand current:resistors31.2.3Voltage dividers71.2.4Voltage sources and currentsources81.2.5Th evenin equivalent circuit91.2.6Small-signal resistance121.2.7An example:“Its too hot!”131.3Signals131.3.1Sinusoidal signals141.3.2Signal amplitudes and decibels141.3.3Other signals151.3.4Logic levels171.3.5Signal sources171.4Capacitors and ac circuits181.4.1Capacitors181.4.2RC circuits:V and I versus time211.4.3Differentiators251.4.4Integrators261.4.5Not quite perfect.281.5Inductors and transformers281.5.1Inductors281.5.2Transformers301.6Diodes and diode circuits311.6.1Diodes311.6.2Rectification311.6.3Power-supply filtering321.6.4Rectifier configurations forpower supplies331.6.5Regulators341.6.6Circuit applications of diodes351.6.7Inductive loads and diodeprotection381.6.8Interlude:inductors as friends391.7Impedance and reactance401.7.1Frequency analysis of reactivecircuits411.7.2Reactance of inductors441.7.3Voltages and currents ascomplex numbers441.7.4Reactance of capacitors andinductors451.7.5Ohms law generalized461.7.6Power in reactive circuits471.7.7Voltage dividers generalized481.7.8RC highpass filters481.7.9RC lowpass filters501.7.10RC differentiators andintegrators in the frequencydomain511.7.11Inductors versus capacitors511.7.12Phasor diagrams511.7.13“Poles”and decibels per octave521.7.14Resonant circuits521.7.15LC filters541.7.16Other capacitor applications541.7.17Th evenins theorem generalized551.8Putting it all together an AM radio551.9Other passive components561.9.1Electromechanical devices:switches561.9.2Electromechanical devices:relays591.9.3Connectors591.9.4Indicators611.9.5Variable components631.10 A parting shot:confusing markings anditty-bitty components641.10.1Surface-mount technology:thejoy and the pain65ixxContentsArt of Electronics Third EditionAdditional Exercises for Chapter 166Review of Chapter 168TWO:Bipolar Transistors712.1Introduction712.1.1First transistor model:currentamplifier722.2Some basic transistor circuits732.2.1Transistor switch732.2.2Switching circuit examples752.2.3Emitter follower792.2.4Emitter followers as voltageregulators822.2.5Emitter follower biasing832.2.6Current source852.2.7Common-emitter amplifier872.2.8Unity-gain phase splitter882.2.9Transconductance892.3EbersMoll model applied to basic tran-sistor circuits902.3.1Improved transistor model:transconductance amplifier902.3.2Consequences of theEbersMoll model:rules ofthumb for transistor design912.3.3The emitter follower revisited932.3.4The common-emitter amplifierrevisited932.3.5Biasing the common-emitteramplifier962.3.6An aside:the perfect transistor992.3.7Current mirrors1012.3.8Differential amplifiers1022.4Some amplifier building blocks1052.4.1Pushpull output stages1062.4.2Darlington connection1092.4.3Bootstrapping1112.4.4Current sharing in paralleledBJTs1122.4.5Capacitance and Miller effect1132.4.6Field-effect transistors1152.5Negative feedback1152.5.1Introduction to feedback1162.5.2Gain equation1162.5.3Effects of feedback on amplifiercircuits1172.5.4Two important details1202.5.5Two examples of transistoramplifiers with feedback1212.6Some typical transistor circuits1232.6.1Regulated power supply1232.6.2Temperature controller1232.6.3Simple logic with transistorsand diodes123Additional Exercises for Chapter 2124Review of Chapter 2126THREE:Field-Effect Transistors1313.1Introduction1313.1.1FET characteristics1313.1.2FET types1343.1.3Universal FET characteristics1363.1.4FET drain characteristics1373.1.5Manufacturing spread of FETcharacteristics1383.1.6Basic FET circuits1403.2FET linear circuits1413.2.1Some representative JFETs:abrief tour1413.2.2JFET current sources1423.2.3FET amplifiers1463.2.4Differential amplifiers1523.2.5Oscillators1553.2.6Source followers1563.2.7FETs as variable resistors1613.2.8FET gate current1633.3A closer look at JFETs1653.3.1Drain current versus gatevoltage1653.3.2Drain current versusdrain-source voltage:outputconductance1663.3.3Transconductance versus draincurrent1683.3.4Transconductance versus drainvoltage1703.3.5JFET capacitance1703.3.6Why JFET(versus MOSFET)amplifiers?1703.4FET switches1713.4.1FET analog switches1713.4.2Limitations of FET switches1743.4.3Some FET analog switchexamples1823.4.4MOSFET logic switches1843.5Power MOSFETs1873.5.1High impedance,thermalstability1873.5.2Power MOSFET switchingparameters192Art of Electronics Third EditionContentsxi3.5.3Power switching from logiclevels1923.5.4Power switching cautions1963.5.5MOSFETs versus BJTs ashigh-current switches2013.5.6Some power MOSFET circuitexamples2023.5.7IGBTs and other powersemiconductors2073.6MOSFETs in linear applications2083.6.1High-voltage piezo amplifier2083.6.2Some depletion-mode circuits2093.6.3Paralleling MOSFETs2123.6.4Thermal runaway214Review of Chapter 3219FOUR:Operational Amplifiers2234.1Introduction to op-amps the“perfectcomponent”2234.1.1Feedback and op-amps2234.1.2Operational amplifiers2244.1.3The golden rules2254.2Basic op-amp circuits2254.2.1Inverting amplifier2254.2.2Noninverting amplifier2264.2.3Follower2274.2.4Difference amplifier2274.2.5Current sources2284.2.6Integrators2304.2.7Basic cautions for op-ampcircuits2314.3An op-amp smorgasbord2324.3.1Linear circuits2324.3.2Nonlinear circuits2364.3.3Op-amp application:triangle-wave oscillator2394.3.4Op-amp application:pinch-offvoltage tester2404.3.5Programmable pulse-widthgenerator2414.3.6Active lowpass filter2414.4A detailed look at op-amp behavior2424.4.1Departure from ideal op-ampperformance2434.4.2Effects of op-amp limitations oncircuit behavior2494.4.3Example:sensitivemillivoltmeter2534.4.4Bandwidth and the op-ampcurrent source2544.5A detailed look at selected op-amp cir-cuits2544.5.1Active peak detector2544.5.2Sample-and-hold2564.5.3Active clamp2574.5.4Absolute-value circuit2574.5.5A closer look at the integrator2574.5.6A circuit cure for FET leakage2594.5.7Differentiators2604.6Op-amp operation with a single powersupply2614.6.1Biasing single-supply acamplifiers2614.6.2Capacitive loads2644.6.3“Single-supply”op-amps2654.6.4Example:voltage-controlledoscillator2674.6.5VCO implementation:through-hole versussurface-mount2684.6.6Zero-crossing detector2694.6.7An op-amp table2704.7Other amplifiers and op-amp types2704.8Some typical op-amp circuits2744.8.1General-purpose lab amplifier2744.8.2Stuck-node tracer2764.8.3Load-current-sensing circuit2774.8.4Integrating suntan monitor2784.9Feedback amplifier frequency compensa-tion2804.9.1Gain and phase shift versusfrequency2814.9.2Amplifier compensationmethods2824.9.3Frequency response of thefeedback network284Additional Exercises for Chapter 4287Review of Chapter 4288FIVE:Precision Circuits2925.1Precision op-amp design techniques2925.1.1Precision versus dynamic range2925.1.2Error budget2935.2An example:the millivoltmeter,revisited2935.2.1The challenge:10mV,1%,10M,1.8V single supply2935.2.2The solution:precision RRIOcurrent source2945.3The lessons:error budget,unspecified pa-rameters295xiiContentsArt of Electronics Third Edition5.4Another example:precision amplifier withnull offset2975.4.1Circuit description2975.5A precision-design error budget2985.5.1Error budget2995.6Component errors2995.6.1Gain-setting resistors3005.6.2The holding capacitor3005.6.3Nulling switch3005.7Amplifier input errors3015.7.1Input impedance3025.7.2Input bias current3025.7.3Voltage offset3045.7.4Common-mode rejection3055.7.5Power-supply rejection3065.7.6Nulling amplifier:input errors3065.8Amplifier output errors3075.8.1Slew rate:generalconsiderations3075.8.2Bandwidth and settling time3085.8.3Crossover distortion and outputimpedance3095.8.4Unity-gain power buffers3115.8.5Gain error3125.8.6Gain nonlinearity3125.8.7Phase error and“activecompensation”3145.9RRIO op-amps:the good,the bad,and theugly3155.9.1Input issues3165.9.2Output issues3165.10 Choosing a precision op-amp3195.10.1“Seven precision op-amps”3195.10.2Number per package3225.10.3Supply voltage,signal range3225.10.4Single-supply operation3225.10.5Offset voltage3235.10.6Voltage noise3235.10.7Bias current3255.10.8Current noise3265.10.9CMRR and PSRR3285.10.10 GBW,fT,slew rate and“m,”and settling time3285.10.11 Distortion3295.10.12“Two out of three isnt bad”:creating a perfect op-amp3325.11 Auto-zeroing(chopper-stabilized)ampli-fiers3335.11.1Auto-zero op-amp properties3345.11.2When to use auto-zero op-amps3385.11.3Selecting an auto-zero op-amp3385.11.4Auto-zero miscellany3405.12 Designs by the masters:Agilents accurateDMMs3425.12.1Its impossible!3425.12.2Wrong it is possible!3425.12.3Block diagram:a simple plan3435.12.4The 34401A 6.5-digit front end3435.12.5The 34420A 7.5-digit frontend3445.13 Difference,differential,and instrumenta-tion amplifiers:introduction3475.14 Difference amplifier3485.14.1Basic circuit operation3485.14.2Some applications3495.14.3Performance parameters3525.14.4Circuit variations3555.15 Instrumentation amplifier3565.15.1A first(but naive)guess3575.15.2Classic three-op-ampinstrumentation amplifier3575.15.3Input-stage considerations3585.15.4A“roll-your-own”instrumentation amplifier3595.15.5A riff on robust input protection3625.16 Instrumentation amplifier miscellany3625.16.1Input current and noise3625.16.2Common-mode rejection3645.16.3Source impedance and CMRR3655.16.4EMI and input protection3655.16.5Offset and CMRR trimming3665.16.6Sensing at the load3665.16.7Input bias path3665.16.8Output voltage range3665.16.9Application example:currentsource3675.16.10 Other configurations3685.16.11 Chopper and auto-zeroinstrumentation amplifiers3705.16.12 Programmable gaininstrumentation amplifiers3705.16.13 Generating a differential output3725.17 Fully differential amplifiers3735.17.1Differential amplifiers:basicconcepts3745.17.2Differential amplifierapplication example:widebandanalog link3805.17.3Differential-input ADCs3805.17.4Impedance matching382Art of Electronics Third EditionContentsxiii5.17.5Differential amplifier selectioncriteria383Review of Chapter 5388SIX:Filters3916.1Introduction3916.2Passive filters3916.2.1Frequency response with RCfilters3916.2.2Ideal performance with LCfilters3936.2.3Several simple examples3936.2.4Enter active filters:an overview3966.2.5Key filter performance criteria3996.2.6Filter types4006.2.7Filter implementation4056.3Active-filter circuits4066.3.1VCVS circuits4076.3.2VCVS filter design using oursimplified table4076.3.3State-variable filters4106.3.4Twin-T notch filters4146.3.5Allpass filters4156.3.6Switched-capacitor filters4156.3.7Digital signal processing4186.3.8Filter miscellany422Additional Exercises for Chapter 6422Review of Chapter 6423SEVEN:Oscillators and Timers4257.1Oscillators4257.1.1Introduction to oscillators4257.1.2Relaxation oscillators4257.1.3The classic oscillatortimerchip:the 5554287.1.4Other relaxation-oscillator ICs4327.1.5Sinewave oscillators4357.1.6Quartz-crystal oscillators4437.1.7Higher stability:TCXO,OCXO,and beyond4507.1.8Frequency synthesis:DDS andPLL4517.1.9Quadrature oscillators4537.1.10Oscillator“jitter”4577.2Timers4577.2.1Step-triggered pulses4587.2.2Monostable multivibrators4617.2.3A monostable application:limiting pulse width and dutycycle4657.2.4Timing with digital counters465Review of Chapter 7470EIGHT:Low-Noise Techniques4738.1Noise”4738.1.1Johnson(Nyquist)noise4748.1.2Shot noise4758.1.31/f noise(flicker n