2023
大学物理
答案
第二
范文
学海无涯
大学物理答案第二版
篇一:物理学教程第二版马文蔚上册课后完好版
第一章 质点运动学
1 -1 质点作曲线运动,在时刻t 质点的位矢为r,速度为v ,速率为v,t 至(t +Δt)时间内的位移为Δr, 路程为Δs, 位矢大小的变化量为Δr ( 或称Δ|r|),平均速度为,平均速率为. (1) 按照上述情况,那么必有( ) (A) |Δr|= Δs = Δr
(B) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= ds ≠ dr (C) |Δr|≠ Δr ≠ Δs,当Δt→0 时有|dr|= dr ≠ ds (D) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= dr = ds (2) 按照上述情况,那么必有( )
(A) |v|= v,||=(B) |v|≠v,||≠ (C) |v|= v,||≠(D) |v|≠v,||=
分析与解 (1) 质点在t 至(t +Δt)时间内沿曲线从P 点运动到P′点,各量关系如以以以下图, 其中路程Δs =PP′, 位移大小|Δr|=PP′,而Δr =|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,那么有|dr|=ds,但却不等于dr.应选(B). (2) 由于|Δr |≠Δs,故
ΔrΔt
ΔsΔt
,即||≠.
但由于|dr|=ds,故
drdt
dsdt
,即||=.由此可见,应选(C).
1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即 (1)
drdt
; (2)
drdt
; (3)
dsdt
; (4)
dxdydtdt
22
.
下述推断正确的选项( )
(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确
分析与解
drdt
表示质点到坐标原点的间隔随时间的变化率,在极坐标系中叫径向速率.通常
drdt
用符号vr表示,这是速度矢量在位矢方向上的一个分量;
dsdt
表示速度矢量;在自然坐标系中
dxdy
dtdt
2
2
速度大小可用公式v选(D).
计算,在直角坐标系中那么可由公式v求解.故
1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对以下表达式,即
(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at. 下述推断正确的选项( )
(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的(D) 只有(3)是对的 分析与解
dvdt
表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方
drdt
向的一个分量,起改变速度大小的作用;
dsdt
在极坐标系中表示径向速率vr(如题1 -2 所述);
dvdt
在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度at.因
此只有(3) 式表达是正确的.应选(D). 1 -4 一个质点在做圆周运动时,那么有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变
分析与解 加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因此法向加速度是一定改变的.至于at是否改变,那么要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点那么作一般的变速率圆周运动.由此可见,应选(B).
23
1 -5 已经明白质点沿x 轴作直线运动,其运动方程为x26t2t,式中x 的单位为m,t 的单
位为 s.求:
(1) 质点在运动开始后4.0 s内的位移的大小; (2) 质点在该时间内所通过的路程;
(3) t=4 s时质点的速度和加速度.
分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直截了当由运动方程得到:
Δxxtx0,而在求路程时,就必须留意到质点在运动过程中可能改变运动方向,现在,位移
的大小和路程就不同了.为此,需按照
dxdt
0来确定其运动方向改变的时刻tp ,求出0~tp 和
tp~t 内的位移大小Δx1 、Δx2 ,那么t 时间内的路程sx1x2,如以以以下图,至于t =4.0 s 时
dxdt
质点速度和加速度可用和
dxdt
2
2
两式计算.
题 1-5 图
解 (1) 质点在4.0 s内位移的大小
Δxx4x032m
dxdt
(2) 由 得知质点的换向时刻为
0
tp2s (t=0不合题意)
那么
Δx1x2x08.0m
Δx2x4x240m
因此,质点在4.0 s时间间隔内的路程为
sΔx1Δx248m
(3) t=4.0 s时
v
dxdt
2
t4.0s
48ms
1
a
dxdt
2
t4.0s
2
36m.s
2
1 -6 已经明白质点的运动方程为r2ti(2t)j,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;
(2) t =0 及t =2s时,质点的位矢;
(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr;
分析 质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得到.关于r、Δr、Δr、Δs 来说,物理含义不同,(详见题1-1分析). 解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为
y2
14x
2
这是一个抛物线方程,轨迹如图(a)所示.
(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为
r02j , r24i2j
图(a)中的P、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得
Δrr2r1(x2x0)i(y2y0)j4i2j
其中位移大小Δr(Δx)(Δy)
22
5.66m x2y2
2
2
而径向增量ΔrΔr
r2r0x0y02.47m
22
题 1-6 图
1 -7 质点的运动方程为
x10t30t
2
y15t20t
2
式中x,y 的单位为m,t 的单位为s.
试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.
分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向. 解 (1) 速度的分量式为
vy
dxdtdydt
1060t 1540t
当t =0 时, v0x =-10 m·s-1 , v0y =15 m·s-1 ,那么初速度大小为
v0
v0xv0y
2
2
18.0ms
1
设v0与x 轴的夹角为α,那么
tanα
v0yv0x
32
α=123°41′
(2) 加速度的分量式为
ax
ddt
60ms
2
, ay
dvydt
40ms
2
那么加速度的大小为
a
axay
2
2
72.1ms
2
设a 与x 轴的夹角为β,那么
tanβ
ayax
23
β=-33°41′(或326°19′)
1 -8 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m.计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降间隔.
分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢一样这一条件,征询题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度确实是螺丝(或升降机)运动的路程. 解1 (1) 以地面为参考系,取如以以以下图的坐标系,升降机与螺丝的运动方程分别为
y1v0t
12at 12gt
22
y2hv0t
当螺丝落至底面时,有y1 =y2 ,即
v0t
12at
2
hv0t
12
gt
2
t
2hga
0.705s
(2) 螺丝相对升降机外固定柱子下降的间隔为
dhy2v0t
12gt
2
0.716m
解2 (1)以升降机为参考系,现在,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有
0h
12
(ga)t
2
t
2hga
0.705s
(2) 由于升降机在t 时间内上升的高度为
hv0t
12at
2
那么 dhh0.716m
篇二:物理学教程(第二版)上册课后习题答案详解
物理学教程〔第二版〕上册习题答案
第一章 质点运动学
1 -1 质点作曲线运动,在时刻t 质点的位矢为r,速度为v ,速率为v,t 至(t +Δt)时间内的位移为Δr, 路程为Δs, 位矢大小的变化量为Δr ( 或称Δ|r|),平均速度为,平均速率为. (1) 按照上述情况,那么必有( ) (A) |Δr|= Δs = Δr
(B) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= ds ≠ dr (C) |Δr|≠ Δr ≠ Δs,当Δt→0 时有|dr|= dr ≠ ds (D) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= dr = ds (2) 按照上述情况,那么必有( )
(A) |v|= v,||=(B) |v|≠v,||≠ (C) |v|= v,||≠(D) |v|≠v,||=
分析与解 (1) 质点在t 至(t +Δt)时间内沿曲线从P 点运动到P′点,各量关系如以以以下图, 其中路程Δs =PP′, 位移大小|Δr|=PP′,而Δr =|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,那么有|dr|=ds,但却不等于dr.应选(B). (2) 由于|Δr |≠Δs,故
ΔrΔs,即||≠. ΔtΔt
但由于|dr|=ds,故
drds
,即||=.由此可见,应选(C). dtdt
1 -2
dr(1)
dt
一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即
; (2)
drdt
;
ds(3)
dt
; (4)
dxdydtdt
22
.
下述推断正确的选项( )
(A) 只有(1)(2)正确 (B) 只有(2)正确
(C) 只有(2)(3)正确 (D) 只有(3)(4)正确 分析与解
drdt
表示质点到坐标原点的间隔随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,
drdt
表示速度矢量;在自然坐标系中速度大小可用公式v
2
2
ds
计dt
dxdy
算,在直角坐标系中那么可由公式v
dtdt
求解.应选(D).
1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对以下表达式,即
(1)d v /dt =a;(2)dr/dt =v;