温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
HDI
铜箔
剥离
强度
探讨
61短兵相接实战场CommentEncountered印制电路信息2023No.8HDI板铜箔压合剥离强度探讨邹定明陆永平金立奎曾祥刚李伟(珠海方正科技高密电子有限公司,广东珠海519 17 9)摘要随着智能电子产品向轻薄化及多功能化发展,高阶高密度互连板(HDI)12 层及以上产品对铜箔剥离强度要求越来越高。铜箔剥离强度在印制电路板(PCB)层压前后变化不大,因此铜箔的剥离强度是影响PCB剥离强度的关键因素。选取A、B、C、D 四种不同的铜箔进行对比测试。研究结果表明:剥离强度与设备及压合位置无关,与材料本身及设计强相关。关键词高密度互连板(HDI);剥离强度;粗糙度中图分类号:TN41文献标志码:A文章编号:10 0 9-0 0 9 6(2 0 2 3)0 8-0 0 6 1-0 4Discussion on the strength of copper foil compression andstripping of HDIZOU DingmingLU YongpinggJINLikuiZENG XianggangLI Wei(Zhuhai Founder Tech.Hi-Density Electronic Co.,Ltd.,Zhuhai 519179,Guangdong,China)Abstractt The trend of intelligent electronic products towards lightness,thinness and versatility.High order highdensity interconnect(HDI)board products with 12 layers and above have requirements for copper foil stripping strength.The stripping strength of copper foil does not change much before and after the lamination of printed circuit boards,sothe stripping strength of copper foil is the key factor affecting the stripping strength of PCBs.Now,comparative tests areconducted on four different types of copper foils A,B,C,and D.The research results show that the stripping strength isnot related to the equipment or the pressing position,but strongly related to the material itself and design.Keywordsshigh density interconnector(HDIl);stripping strength;roughness0引言某公司交付客户12 层高密度互连(highdensityinterconnector,H D I)板,客户反馈剥离强度不能达到要求(1.0 5N/mm),实际值最小为1.009N/mm。针对此异常,公司内需深入研究,找出影响剥离强度的因子,并根据测试结果,重新制定最佳方案,保证后续产品剥离强度达到客户要求。研究重点在于铜箔类型和压合条件的影响。作者简介:邹定明(19 8 9 一),男,高级工程师,主要研究方向为HDI板新技术及新产品开发。-62-印制电路信息2023No.8短兵相接实战场Comment Encountered1实验板设计实验板设计为4层高密度互连(highdensityinterconnector,H D I)板,厚度0.5mm,如图1所示。具体流程如图2 所示,其中,AOI为自动化光学检测J(automated optical inspection)。2材料对比测试2.1铜箔表面粗糙度对比采用扫描电子显微镜(scanning electronicmicroscope,S EM)(日立,型号S-3400N)分别测量4种铜箔,其表面粗糙度结果见表1。由表1可L1Cu 12 um半固化PP片L2芯板0.38 1mmL3半固化PP片Cu 12 mL4图1实验板叠构见,A型铜箔粗糙度最大,其次为C型,B、D 型铜箔粗糙度较小。开料裁板钻孔电镀图形一AOI压合钻孔电镀图形AOI防焊成型电测终检/包装图2实验板流程设计表1SEM对比铜箔表面粗糙度铜箔500倍1000倍3000倍ABCD-63-短兵相接实战场Comment Encountered印制电路信息2023No.82.2铜箔EDS元素分析采用SEM进行能谱(energy dispersivespectroscopy,ED S)元素分析,结果如图3和表2所示。由表2 可知,4种铜箔元素含量差异不大,因此可排除元素问题谱图1谱图1谱图1谱图102 4681012140246 8101214246810121402468101214kevkevkevkeV满量程9 48 1cts光标:0.0 0 0 0满量程9 48 1cts光标:0.0 0 0 0满量程9 48 1cts光标:0.0 0 0 0满量程9 48 1cts光标:0.0 0 0 0(a)铜箔a(b)铜箔b(c)铜箔c(d)铜箔d图3铜箔元素EDS分析表2元素质量百分比元素质量百分比/%铜箔C0CuTaA1NiA6.010.9893.05-0.04B4.580.7894.410.23C5.500.9592.210.281.06D4.840.6993.221.253.3Ra、R z、R s M 测试对比采用3D测量激光显微镜(奥林巴斯,型号OLS4100),进行铜箔粗糙度量测,数据见表3。由表3可见,A、C 型2 种铜箔粗糙度较好,B、D型2 种铜箔粗糙度较差。表34种铜箔粗糙度数据单位:m实际量测值铜箔项目12345678910最大最小平均1.041.030.951.170.961.050.990.970.990.961.170.951.01AR6.216.576.226.486.665.945.977.126.856.808.485.946.68RsM11.1710.0910.6811.0810.9210.0711.1710.8810.5411.4311.4310.0710.80R0.960.900.870.930.970.980.971.040.870.811.040.810.93BR.5.555.695.785.335.536.086.556.125.535.516.555.335.77RsM9.6211.6111.3012.0910.9011.499.8811.3110.229.2112.099.2110.76R1.141.070.960.910.970.940.960.980.990.951.140.910.99CR6.646.076.286.346.016.915.916.336.546.015.916.016.50RsM9.8812.5812.4511.2710.2110.2411.8210.3310.7811.8812.589.8811.14R.0.990.960.870.880.910.950.971.030.940.951.030.870.95DR,6.785.975.505.835.956.505.686.115.925.986.785.506.02RsM9.3810.9610.4810.389.289.3010.759.8812.3011.7712.309.2810.453铜箔压后测试剥离强度对比3.1铜箔压合完测试板铜厚电镀加厚至2 2 2 7 m,取样方式为每面5个点(四角+中心),实际剥离强度结果见表4。由表4可见,A、C 型2 种铜箔剥离强度达1.05N/mm以上,B、D 型2 种铜箔出现个别点不合格。3.2不同压机剥离强度压机剥离强度对比见表5。由表5可见,不同压机剥离强度差异不大。-64-印制电路信息2023No.8短兵相接实战场Comment Encountered表4不同铜箔剥离强度量测数据单位:Nmm-1铜箔实际量测值类型12345678910最大最小平均A1.231.291.271.251.271.241.261.261.241.171.291.171.25B1.021.061.051.021.001.061.021.000.971.031.060.971.02C1.281.401.281.311.291.321.331.371.361.341.401.281.33D1.071.021.051.071.051.041.071.031.061.061.071.021.05表5不同压机剥离强度量测数据单位:Nmm=1压机实际量测值类别12345678910最大最小平均单台面1.231.291.271.251.271.241.261.261.241.171.291.171.25双台面1.251.261.171.221.291.261.231.271.271.201.291.171.24四台面1.241.271.321.221.321.241.201.261.191.211.321.191.253.3测试压机开档不同位置剥离强度压机整体共叠在制板15块,取样上、中、下各1块,测量数据见表6。由表6 可见,同一压机同开档不同层别位置的剥离强度差异不大。表6不同压机开档位置剥离强度量测数据单位:Nmm=l压合实际量测值位置12345678910最大最小平均上1.031.000.961.041.031.041.040.940.971.001.040.941.01中0.950.991.001.000.970.991.040.981.000.931.040.930.99下1.021.061.051.021.001.061.021.000.971.031.060.971.023.4铜箔拉力条下10 0%残铜率和6 5%残铜率对比铜箔拉力条下,10 0%残铜率与6 5%残铜率的剥离强度量测数据见表7。由表7 可见,两者相差0.35N/mm,且拉力条下6 5%残铜率剥离强度不稳定。表7不同铜箔拉力条下残铜率剥离强度量测数据单位:Nmm实际值设计类型12345678910最大最小平均100%残铜率1.241.271.321.221.321.241.201.261.191.211.321.191.2565%残铜率0.690.850.680.850.981.061.011.031.010.871.060.680.904结语HDI板铜箔剥离强度与铜箔本身材料、设计相关。根据综合测试结果,选择A铜箔,在铜箔拉力位置内层设计为实铜,有效解决了剥离强度不足的问题,满足客户需求,提升制程能力,为后续其他产品在涉及铜箔粗糙度及设计铜牙大小方面提供了技术性支持。在高速PCB产品的生产过程中需要严格管控铜箔粗糙度,粗糙度越大对信号传输的损耗也越大。对信号传输要求较高的产品,内层一般使用低粗糙度铜箔及低粗糙度药水,外层使用粗糙度较高的铜箔,提升表面元器件焊盘结合力。