添加微信:car4900,免费领小学资料添加微信:car4900,免费领小学资料第十二讲数字谜与数阵图所谓的数字谜问题是指在某种算式或者图形中,含有一些用空格、文字或字母等符号表示的待定数字,要求填上合适的数字,使算式或者图形成立的一类问题。此类问题的知识基础就是根据运算的法则,加、减、乘、除的互逆关系及适当地运用有关整数性质的知识加以推理。常用的基本技巧:(1)分析算式中隐含的数量关系及数的性质,选择有特征的部分作为突破口。例如:两数相乘,如果知道积的尾数就可以列出两个乘数个位数的各种可能情况。如:积的尾数是5,其中一个乘数是5,那么另一个乘数的尾数一定为奇数1、3、5、7、9。若积的尾数是偶数,那么两乘数中至少有一个为偶数。此外在乘法算式中,不仅积是由被乘数和乘数决定的,反过来,积的位数也限定了被乘数的乘数的大小。(2)在确定所求的数字时,可采取试验法,为了减少试验的次数,常借助估值的方法,对某些数位上的数字进行合理地估计,逐步排除一些取值的可能,缩小所求数字的取值范围经过很少的几次试验,得到准确的答案。解决这一类题常常要通过观察、判断、推理、尝试(凑)等手段来处理。关键在于确定从何处着手,即找到突破口。例1:将2、3、4、5、6、8、11、12这8个数填在图1的□中,使它们组成图1中的4个等添加微信:car4900,免费领小学资料添加微信:car4900,免费领小学资料式。分析:这里有8个数字需要填入8个空格中,用多次试验的办法,虽然最终一定能找出答案,但很费时间。能不能开动脑筋,想出好办法,以减少试验的次数呢?题中有4个等式,含有4种运算,对于加、减运算,可填的情况很多,所以应先考虑乘、除运算。先将8个位置用字母标识出来。c既是a与b的乘积,作为被除数,它又是e与h的乘积。因此c应为可以写成两种不同乘积形式的数。只有12符合条件,因为:12=3×4=2×6,所以:a、b、e、h为3、4、2、6,剩下的三个数为11、5、8。f既为被减数,又是和,则f为最大的11,d、g为5、8。可以先确定d、g的值,再写出a、b、e、h的值。由d=5,g=8或d=8,g=5,得到两种情况。答案:点评:得到c的值后,不要急于确定a、b、e、h的值,虽然经过有限的几次尝试可以得到正确答案,但很容易丢掉一个解。应该开阔你的视野,注意到还有条件没被用到。所以第二步应确定f。例2:将1~11填入图2内,使相邻两个或三个数字组成的横竖斜行的和为14。分析:如图3:假设以字母a~k代表数字1~11(不考虑顺序)。此题的...