温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2022
江西
高考
理科
数学
答案
2022年江西高考理科数学真题及答案
注意事项:
1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集,集合M满足,则( )
A. B. C. D.
2.已知,且,其中a,b为实数,则( )
A. B. C. D.
3.已知向量满足,则( )
A. B. C.1 D.2
4.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则( )
A. B. C. D.
5.设F为抛物线的焦点,点A在C上,点,若,则( )
A.2 B. C.3 D.
6.执行下边的程序框图,输出的( )
A.3 B.4 C.5 D.6
7.在正方体中,E,F分别为的中点,则( )
A.平面平面 B.平面平面
C.平面平面 D.平面平面
8.已知等比数列的前3项和为168,,则( )
A.14 B.12 C.6 D.3
9.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )
A. B. C. D.
10.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( )
A.p与该棋手和甲、乙、丙的此赛次序无关 B.该棋手在第二盘与甲比赛,p最大
C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大
11.双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A. B. C. D.
12.已知函数的定义域均为R,且.若的图像关于直线对称,,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分.
13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
14.过四点中的三点的一个圆的方程为____________.
15.记函数的最小正周期为T,若,为的零点,则的最小值为____________.
16.己知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)
记的内角的对边分别为,已知.
(1)证明:;
(2)若,求的周长.
18.(2分)
如图,四面体中,,E为的中点.
(1)证明:平面平面;
(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.
19.(12分)
某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i
1
2
3
4
5
6
7
8
9
10
总和
根部横截面积
0.04
0.06
0.04
0.08
0.08
0.05
0.05
0.07
0.07
0.06
0.6
材积量
0.25
0.40
0.22
0.54
0.51
0.34
0.36
0.46
0.42
0.40
3.9
并计算得.
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数.
20.(12分)
已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
21.(12分)
已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在区间各恰有一个零点,求a的取值范围.
(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系中,曲线C的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为.
(1)写出l的直角坐标方程;
(2)若l与C有公共点,求m的取值范围.
23.[选修4-5:不等式选讲](10分)
已知a,b,c都是正数,且,证明:
(1);
(2).
全国乙卷理科数学解析