2020年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题(共12小题).1.已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.52.若(1+i)=1﹣i,则z=()A.1﹣iB.1+iC.﹣iD.i3.设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为()A.0.01B.0.1C.1D.104.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.已知sinθ+sin()=1,则sin()=()A.B.C.D.6.在平面内,A,B是两个定点,C是动点.若=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线7.设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)8.点(0,﹣1)到直线y=k(x+1)距离的最大值为()A.1B.C.D.29.如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+210.设a=log32,b=log53,c=,则()A.a<c<bB.a<b<cC.b<c<aD.c<a<b11.在△ABC中,cosC═,AC=4,BC=3,则tanB=()A.B.2C.4D.812.已知函数f(x)=sinx+,则()A.f(x)的最小值为2B.f(x)的图象关于y轴对称C.f(x)的图象关于直线x=π对称D.f(x)的图象关于直线x=对称二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足约束条件则z=3x+2y的最大值为.14.设双曲线C:﹣=1(a>0,b>0)的一条渐近线为y=x,则C的离心率为.15.设函数f(x)=,若f′(1)=,则a=.16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.设等比数列{an}满足a1+a2=4,a3﹣a1=8.(1)求{an}的通项公式;(2)记Sn为数列{log3an}的前n项和.若Sm+Sm+1═Sm+3,求m.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600...