分享
2015年海南省高考数学(原卷版)(理科).docx
下载文档

ID:2834844

大小:415.88KB

页数:3页

格式:DOCX

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2015 海南省 高考 数学 原卷版 理科
2015年普通高等学校招生全国统一考试(海南卷) 理科数学 注意事项 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A∩B= (A){-1,0} (B){0,1} (C){-1,0,1} (D){0,1,2} 2.若a为实数且(2+ai)(a-2i)=-4i,则a = (A)-1 (B)0 (C)1 (D)2 3. 根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。以下结论不正确的是 (A)逐年比较,2008年减少二氧化硫排放量的效果最显著 (B)2007年我国治理二氧化硫排放显现 (C)2006年以来我国二氧化硫年排放量呈减少趋势 (D)2006年以来我国二氧化硫年排放量与年份正相关 4.等比数列{an}满足a1=3,a1+ a3+ a5=21,则a3+ a5+ a7 = (A)21 (B)42 (C)63 (D)84 5.设函数f(x)=,则f (-2)+ f (log212) = (A)3 (B)6 (C)9 (D)12 6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则 截去部分体积与剩余部分体积的与剩余部分体积的比值为 (A) (B) (C) (D) 7.过三点A(1,3),B(4,2),C(1,-7)的圆交于y轴于M、N两点,则= (A)2 (B)8 (C)4 (D)10 8.右边程序抗土的算法思路源于我国古代数学名著《九章算术》 中的“更相减损术”。执行该程序框图,若输入a,b分别为14,18, 则输出的a= (A)0 (B)2 (C)4 (D)14 9. 已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体 积的最大值为36,则球O的表面积为 (A)36π (B)64π (C)144π (D)256π 10. 如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与 DA运动,∠BOP=x。将动点P到AB两点距离之和表示为x的函数f(x),则f(x) 的图像大致为 11. 已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为 120°,则E的离心率为 (A) (B)2 (C) (D) 12.设函数f’(x)是奇函数f (x)(x∈R)的导函数,f(−1)=0,当x>0时,x f’(x)-f (x)<0,则使得f (x) >0成立的x的取值范围是 (A) (-∞,-1)∪(0,1) (B) (-1,0)∪(1,+∞) (C) (-∞,-1)∪(-1,0) (D) (0,1)∪(1,+∞) 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答。 二、填空题:本大题共4小题,每小题5分。 13.设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=________.(用数字填写答案) 14.若x,y满足约束条件,则z= x+y的最大值为____________.. 15.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a =__________. 16.设Sn是数列{an}的前n项和,且a1=-1,an+1=Sn Sn+1,则Sn=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) ∆ABC中,D是BC上的点,AD平分∠BAC,∆ABD是∆ADC面积的2倍。 (Ⅰ) 求; (Ⅱ) 若AD=1,DC=,求BD和AC的长. 18. (本小题满分12分) 某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); (Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级: 满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意 记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”。假设两地区用户的评价结果相互独立。根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率 19. (本小题满分12分) 如图,长方体ABCD−A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F。过带你E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求直线AF与平面α所成角的正弦值 20. (本小题满分12分) 已知椭圆C:9x2+ y2 = m2 (m>0),直线l不过原点O且不平行于坐标轴,l与C有 两个交点A,B,线段AB的中点为M. (I)证明:直线OM的斜率与l的斜率的乘积为定值; (II)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否平行四边行? 若能,求此时l的斜率,若不能,说明理由. 21. (本小题满分12分) 设函数fx=emx+x2−mx. (Ⅰ)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增; (Ⅱ)若对于任意x1, x2∈[-1,1],都有|f(x1)− f(x2)|≤e−1,求m的取值范围 请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号. 22.(本小题满分10分)选修4—1:几何证明选讲 如图,O为等腰三角形ABC内一点,圆O与ABC的底边BC交于M、N两点与底边上的高AD交于点G,且与AB、AC分别相切于E、F两点. (I)证明:EF平行于BC (II) 若AG等于圆O的半径,且AE=MN=,求四边形EBCF的面积。 23(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy中,曲线C1:,其中0≤α<π ,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=cosθ . (I).求C2与C3交点的直角坐标 (II).若C1与C2相交于点A,C1与C3相交于点B,求的最大值 (24)(本小题满分10分)选修4-5不等式选讲 设a、b、c、d均为正数,且a+b=c+d,证明: (I)若ab>cd ,则; (II)是的充要条件. (24)(本小题满分10分)选修4-5不等式选讲 设均为正数,且,证明: (I)若,则; (II)是的充要条件.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开