分享
2012年浙江省高考数学【理】(原卷版).doc
下载文档

ID:2834394

大小:486KB

页数:3页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2012 浙江省 高考 数学 原卷版
2012年普通高等学校招生全国统一考试 数 学(理科) 选择题部分(共50分) 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一个项是符合题目要求的。 1.设集合,集合,则 A. B. C. D. 2.已知是虚数单位,则 A. B. C. D. 3.设,则“”是“直线:与直线:平行”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.把函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是 5.设,是两个非零向量 A.若,则 B.若,则 C.若,则存在实数,使得 D.若存在实数,使得,则 6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 A.60种 B.63种 C.65种 D.66种 7.设是公差为()的无穷等差数列的前项和,则下列命题错误的是 A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 8.如图,,分别是双曲线:的 左、右两焦点,是虚轴的端点,直线与的两条渐近 线分别交于,两点,线段的垂直平分线与轴交于点 .若,则的离心率是 A. B. C. D. 9.设, A.若,则 B.若,则 C.若,则 D.若,则 10.已知矩形,,.将沿矩形的对角线所在的直线进行翻折,在翻折过程中, A.存在某个位置,使得直线与直线垂直 B.存在某个位置,使得直线与直线垂直 C.存在某个位置,使得直线与直线垂直 D.对任意位置,三对直线“与”,“与”,“与”均不垂直 非选择题部分(共100分) 二、填空题:本大题共7小题,每小题4分,共28分。 11.已知某三棱锥的三视图(单位:)如图所示,则该三棱锥 的体积等于 . 12.若某程序框图如图所示,则该程序运行后输出的值是 . 13.设公比为的等比数列的前项和为. 若,,则 . 14.若将函数表示为 , 其中,,,…,为实数,则 . 15.在中,是的中点,,, 则 . 16.定义:曲线上的点到直线的距离的最小值称为曲线到直线 的距离.已知曲线:到直线:的距离等于曲线 :到直线:的距离,则实数 . 17.设,若时均有, 则 . 三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。 18.(本题满分14分)在中,内角,,的对边分别为,,.已知,. (Ⅰ)求的值; (Ⅱ)若,求的面积. 19.(本题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从箱中任取(无放回,且每球取道的机会均等)3个球,记随机变量为取出此3球所得分数之和. (Ⅰ)求的分布列; (Ⅱ)求的数学期望. 20.(本题满分15分)如图,在四棱锥中,底面是 边长为的菱形,,且平面, ,,分别为,的中点. (Ⅰ)证明:平面; (Ⅱ)过点作,垂足为点,求二面角 的平面角的余弦值. 21.(本题满分15分)如图,椭圆:的 离心率为,其左焦点到点的距离为,不过原点的 直线与相交于,两点,且线段被直线平分. (Ⅰ)求椭圆的方程; (Ⅱ)求面积取最大值时直线的方程. 22.(本题满分14分)已知,,函数. (Ⅰ)证明:当时, (i)函数的最大值为; (ii); (Ⅱ)若对恒成立,求的取值范围.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开