温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2008
浙江省
高考
数学
原卷版
2008年普通高等学校招生全国统一考试浙江卷
数学(理科)
本试题卷分第Ⅰ卷和第Ⅱ卷两部分。全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页。满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
第Ⅰ卷(共50分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。
参考公式:
如果事件A、B互斥,那么
P(A+B)=P(A)+(B)
如果事件A、B相互独立,那么
P(A·B)=P(A)·(B)
如果事件A在一次试验中发生的概率是p那么n次独立重复试验中恰好发生k次的概率:
球的表面积公式
S=4
其中R表示球的半径
求的体积公式V=
其中R表示球的半径
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知是实数,是春虚数,则=
(A)1 (B)-1 (C) (D)-
(2)已知U=R,A=,B=,则(A
(A) (B)
(C) (D)
(3)已知,b都是实数,那么“”是“>b”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
(4)在的展开式中,含的项的系数是
(A)-15 (B)85 (C)-120 (D)274
(5)在同一平面直角坐标系中,函数的图象和直线的交点个数是
(A)0 (B)1 (C)2 (D)4
(6)已知是等比数列,,则=
(A)16() (B)16()
(C)() (D)()
(7)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是
(A)3 (B)5 (C) (D)
(8)若则=
(A) (B)2 (C) (D)
(9)已知,b是平面内两个互相垂直的单位向量,若向量满足,则的最大值是
(A)1 (B)2 (C) (D)
(10)如图,AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是
(A)圆 (B)椭圆
(C)一条直线 (D)两条平行直线
第Ⅱ卷(共100分)
二.填空题:本大题共7小题,每小题4分,共28分。
(11)已知>0,若平面内三点A(1,-),B(2,),C(3,)共线,则=________。
(12)已知为椭圆的两个焦点,过的直线交椭圆于A、B两点
若,则=______________。
(13)在△ABC中,角A、B、C所对的边分别为、b、c ,若,则_________________。
(14)如图,已知球O点面上四点A、B、C、D,DA平面ABC,ABBC,DA=AB=BC=,则球O点体积等于___________。
(15)已知t为常数,函数在区间[0,3]上的最大值为2,则t=__________。
(16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)。
(17)若,且当时,恒有,则以,b为坐标点P(,b)所形成的平面区域的面积等于____________。
三.解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
(18)(本题14分)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2。
(Ⅰ)求证:AE//平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为?
(19)(本题14分)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。
(20)(本题15分)已知曲线C是到点P()和到直线距离相等的点的轨迹。是过点Q(-1,0)的直线,M是C上(不在上)的动点;A、B在上,轴(如图)。
(Ⅰ)求曲线C的方程;
(Ⅱ)求出直线的方程,使得为常数。
(21)(本题15分)已知是实数,函数。
(Ⅰ)求函数的单调区间;
(Ⅱ)设为在区间上的最小值。
(i)写出的表达式;
(ii)求的取值范围,使得。
(22)(本题14分)已知数列,,,.记..
求证:当时,
(Ⅰ);
(Ⅱ);
(Ⅲ)。