分享
2006年上海高考数学真题(文科)试卷(word解析版).doc
下载文档

ID:2833823

大小:520KB

页数:10页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2006 上海 高考 数学 文科 试卷 word 解析
绝密★启用前 2006年普通高等学校招生全国统一考试(上海卷) 数学试卷(文史类) (满分150分,考试时间120分钟) 考生注意 1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页. 2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置. 3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分. 4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题. 一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空填对得4分,否则一律得零分。 1、已知,集合,若,则实数。 2、已知两条直线若,则____. 3、若函数的反函数的图像过点,则。 4、计算:。 5、若复数满足(为虚数单位),其中则。 6、函数的最小正周期是_________。 7、已知双曲线中心在原点,一个顶点的坐标为,且焦距与虚轴长之比为,则双曲线的标准方程是____________________. 8、方程的解是_______. 9、已知实数满足,则的最大值是_________. 10、在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是______(结果用分数表示)。 11、若曲线与直线没有公共点,则的取值范围是_________. 12、如图,平面中两条直线和相交于点,对于平面上任意一点,若分别是到直线和的距离,则称有序非负实数对是点的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是____________. 二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。 13、如图,在平行四边形中,下列结论中错误的是 ( ) (A) (B) (C) (D) 14、如果,那么,下列不等式中正确的是( ) (A) (B) (C) (D) 15、若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的 ( ) (A)充分非必要条件 (B)必要非充分条件 (C)充分必要条件 (D)既非充分又非必要条件 16、如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 (A)48 (B) 18 (C) 24 (D)36 三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤。 17、(本题满分12分) 已知是第一象限的角,且,求的值。 18、(本题满分12分)如图,当甲船位于A处时获悉,在其正东方方向相距20海里的处有一艘渔船遇险等待营救。甲船立即前往救援,同时把消息告知在甲船的南偏西,相距10海里处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往处救援(角度精确到)? 19、(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分。 在直三棱柱中,. (1)求异面直线与所成的角的大小; (2)若与平面S所成角为,求三棱锥的体积。 20、(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分。设数列的前项和为,且对任意正整数,。 (1)求数列的通项公式 (2)设数列的前项和为,对数列,从第几项起? 21、本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。 已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点. (1)求该椭圆的标准方程; (2)若是椭圆上的动点,求线段中点的轨迹方程; (3)过原点的直线交椭圆于点,求面积的最大值。 22(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分。 已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。 (1)如果函数在上是减函数,在上是增函数,求的值。 (2)设常数,求函数的最大值和最小值; (3)当是正整数时,研究函数的单调性,并说明理由。 上海数学(文史类)参考答案 一、(第1题至笫12题) 1. 4 2. 2 3. 4. 5. 3 6.π 7. 8. 5 9. 0 10. 11.-1<b<1 12. 4 二、(第13题至笫16题) 13. C 14. A 15. A 16. D 1、已知,集合,若, 则实数。 2、已知两条直线若,,则2. 3、若函数=(>0,且≠1)的反函数的图象过点(2,-1),则原函数的图象过点(-1,2),∴ ,=. 4、计算:。 5、若复数满足(为虚数单位)为纯虚数,其中,则m=2,z=3i,。 6、函数=sin2x,它的最小正周期是π。 7、已知双曲线中心在原点,一个顶点的坐标为,则焦点在x轴上,且a=3,焦距与虚轴长之比为,即,解得,则双曲线的标准方程是. 8、方程的解满足,解得x=5. 9、已知实数满足,在坐标系中画出可行域,得三个交点为A(3,0)、B(5,0)、C(1,2),则的最大值是0. 10、在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是. 11、曲线得|y|>1,∴ y>1或y<-1,曲线与直线没有公共点,则的取值范围是[-1,1]. 12、如图,平面中两条直线和相交于点,对于平面上任意一点,若分别是到直线和的距离,则称有序非负实数对是点的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点可以在两条直线相交所成的四个区域内各找到一个,所以满足条件的点的个数是4个. 二、选择题: 13. C 14. A 15. A 16. D A B C D 13.如图,在平行四边形ABCD中,根据向量的减法法则知,所以下列结论中错误的是C. 14、如果,那么,∴ ,选A. 15、若空间中有两条直线,若“这两条直线为异面直线”,则“这两条直线没有公共点”;若 “这两条直线没有公共点”,则 “这两条直线可能平行,可能为异面直线”;∴ “这两条直线为异面直线”是“这两条直线没有公共点”的充分非必要条件,选A. 16、如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”,分情况讨论:① 对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24个;② 对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个;所以正方体中“正交线面对”共有36个.选D. 三、(第17题至笫22题) 17.解:= 由已知可得sin, ∴原式=. 18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700. 于是,BC=10. ∵, ∴sin∠ACB=, ∵∠ACB<90° ∴∠ACB=41° ∴乙船应朝北偏东71°方向沿直线前往B处救援. 19.解:(1) ∵BC∥B1C1, ∴∠ACB为异面直线B1C1与AC所成角(或它的补角) ∵∠ABC=90°, AB=BC=1, ∴∠ACB=45°, ∴异面直线B1C1与AC所成角为45°. (2) ∵AA1⊥平面ABC, ∠ACA1是A1C与平面ABC所成的角, ∠ACA =45°. ∵∠ABC=90°, AB=BC=1, AC=, ∴AA1=. ∴三棱锥A1-ABC的体积V=S△ABC×AA1=. 20.解(1) ∵an+ Sn=4096, ∴a1+ S1=4096, a1 =2048. 当n≥2时, an= Sn-Sn-1=(4096-an)-(4096-an-1)= an-1-an ∴= an=2048()n-1. (2) ∵log2an=log2[2048()n-1]=12-n, ∴Tn=(-n2+23n). 由Tn<-509,解待n>,而n是正整数,于是,n≥46. ∴从第46项起Tn<-509. 21.解(1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1. 又椭圆的焦点在x轴上, ∴椭圆的标准方程为 (2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0), 由 x= 得 x0=2x-1 y= y0=2y- 由,点P在椭圆上,得, ∴线段PA中点M的轨迹方程是. (3)当直线BC垂直于x轴时,BC=2,因此△ABC的面积S△ABC=1. 当直线BC不垂直于x轴时,说该直线方程为y=kx,代入, 解得B(,),C(-,-), 则,又点A到直线BC的距离d=, ∴△ABC的面积S△ABC= 于是S△ABC= 由≥-1,得S△ABC≤,其中,当k=-时,等号成立. ∴S△ABC的最大值是. 22.解(1) 由已知得=4, ∴b=4. (2) ∵c∈[1,4], ∴∈[1,2], 于是,当x=时, 函数f(x)=x+取得最小值2. f(1)-f(2)=, 当1≤c≤2时, 函数f(x)的最大值是f(2)=2+; 当2≤c≤4时, 函数f(x)的最大值是f(1)=1+c. (3)设0<x1<x2,g(x2)-g(x1)=. 当<x1<x2时, g(x2)>g(x1), 函数g(x)在[,+∞)上是增函数; 当0<x1<x2<时, g(x2)>g(x1), 函数g(x)在(0, ]上是减函数. 当n是奇数时,g(x)是奇函数, 函数g(x) 在(-∞,-]上是增函数, 在[-,0)上是减函数. 当n是偶数时, g(x)是偶函数, 函数g(x)在(-∞,-)上是减函数, 在[-,0]上是增函数.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开