温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2019
重庆市
高考
数学试卷
文科
答案
2019年普通高等学校招生全国统一考试
文科数学
本试卷共5页。考试结束后,将本试卷和答题卡一并交回。
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则A∩B=
A.(–1,+∞) B.(–∞,2)
C.(–1,2) D.
2.设z=i(2+i),则=
A.1+2i B.–1+2i
C.1–2i D.–1–2i
3.已知向量a=(2,3),b=(3,2),则|a–b|=
A. B.2
C.5 D.50
4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为
A. B.
C. D.
5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为
A.甲、乙、丙 B.乙、甲、丙
C.丙、乙、甲 D.甲、丙、乙
6.设f(x)为奇函数,且当x≥0时,f(x)=,则当x<0时,f(x)=
A. B.
C. D.
7.设α,β为两个平面,则α∥β的充要条件是
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一平面
8.若x1=,x2=是函数f(x)=(>0)两个相邻的极值点,则=
A.2 B.
C.1 D.
9.若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=
A.2 B.3
C.4 D.8
10.曲线y=2sinx+cosx在点(π,–1)处的切线方程为
A. B.
C. D.
11.已知a∈(0,),2sin2α=cos2α+1,则sinα=
A. B.
C. D.
12.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为
A. B.
C.2 D.
二、填空题:本题共4小题,每小题5分,共20分.
13.若变量x,y满足约束条件则z=3x–y的最大值是___________.
14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.
15.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.
16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分。
17.(12分)
如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,AB=3,求四棱锥的体积.
18.(12分)
已知是各项均为正数的等比数列,.
(1)求的通项公式;
(2)设,求数列的前n项和.
19.(12分)
某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
的分组
企业数
2
24
53
14
7
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:.
20.(12分)
已知是椭圆的两个焦点,P为C上一点,O为坐标原点.
(1)若为等边三角形,求C的离心率;
(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.
21.(12分)
已知函数.证明:
(1)存在唯一的极值点;
(2)有且仅有两个实根,且两个实根互为倒数.
(二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分.
22.[选修4-4:坐标系与参数方程](10分)
在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.
(1)当时,求及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
23.[选修4-5:不等式选讲](10分)
已知
(1)当时,求不等式的解集;
(2)若时,,求的取值范围.
1.C 2.D 3.A 4.B 5.A 6.D
7.B 8.A 9.D 10.C 11.B 12.A
13.9 14.0.98 15. 16.26
17.解:(1)由已知得B1C1⊥平面ABB1A1,BE平面ABB1A1,
故.
又,所以BE⊥平面.
(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以,故AE=AB=3,.
作,垂足为F,则EF⊥平面,且.
所以,四棱锥的体积.
18.解:(1)设的公比为q,由题设得
,即.
解得(舍去)或q=4.
因此的通项公式为.
(2)由(1)得,因此数列的前n项和为.
19.解:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为.
产值负增长的企业频率为.
用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.
(2),
,
,
所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.
20.解:(1)连结,由为等边三角形可知在中,,,,于是,故的离心率是.
(2)由题意可知,满足条件的点存在当且仅当,,,即,①
,②
,③
由②③及得,又由①知,故.
由②③得,所以,从而故.
当,时,存在满足条件的点P.
所以,的取值范围为.
21.解:(1)的定义域为(0,+).
.
因为单调递增,单调递减,所以单调递增,又,
,故存在唯一,使得.
又当时,,单调递减;当时,,单调递增.
因此,存在唯一的极值点.
(2)由(1)知,又,所以在内存在唯一根.
由得.
又,故是在的唯一根.
综上,有且仅有两个实根,且两个实根互为倒数.
22.解:(1)因为在C上,当时,.
由已知得.
设为l上除P的任意一点.在中,
经检验,点在曲线上.
所以,l的极坐标方程为.
(2)设,在中, 即..
因为P在线段OM上,且,故的取值范围是.
所以,P点轨迹的极坐标方程为 .
23.解:(1)当a=1时,.
当时,;当时,.
所以,不等式的解集为.
(2)因为,所以.
当,时,.
所以,的取值范围是.
选择填空解析
2019年普通高等学校招生全国统一考试(全国 Ⅱ卷)
文科数学
1.设集合,,则( )
A.
B.
C.
D.
答案:
C
解析:
,,∴.
2. 设,则 ( )
A.
B.
C.
D.
答案:
D
解析:
因为,所以.
3. 已知向量, ,则( )
A.
B.
C.
D.
答案:
A
解答:
由题意知,所以.
4. 生物实验室有只兔子,其中只有只测量过某项指标.若从这只兔子中随机取出只,则恰有只测量过该指标的概率为( )
A.
B.
C.
D.
答案:
B
解答:
计测量过的3只兔子为、、,设测量过的只兔子为、则3只兔子的种类有,则恰好有两只测量过的有种,所以其概率为.
5. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )
A.甲、乙、丙
B.乙、甲、丙
C.丙、乙、甲
D.甲、丙、乙
答案:
A
解答:
根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果.
6. 设为奇函数,且当时,,则当时,( )
A.
B.
C.
D.
答案:
D
解答:
当时,,,又为奇函数,
有.
7. 设为两个平面,则的充要条件是( )
A. 内有无数条直线与平行
B. 内有两条相交直线与平行
C. 平行于同一条直线
D. 垂直于同一平面
答案:
B
解析:
根据面面平行的判定定理易得答案.
8. 若是函数两个相邻的极值点,则=
A.
B.
C.
D.
答案:
A
解答:
由题意可知即,所以.
9.若抛物线的焦点是椭圆的一个焦点,则( )
A.2
B.3
C.4
D.8
答案:
D
解析:
抛物线的焦点是,椭圆的焦点是,
∴,∴.
10. 曲线在点处的切线方程为( )
A.
B.
C.
D.
答案:
C
解析:
因为,所以曲线在点处的切线斜率为,
故曲线在点处的切线方程为.
11. 已知,,则( )
A.
B.
C.
D.
答案:
B
解答:
,,
则,所以,
所以.
12.设F为双曲线的右焦点,0为坐标原点,以为直径的圆与圆交于两点,若,则的离心率为
A.
B.
C.
D.
答案:
A
解析:设点坐标为,则以为直径的圆的方程为-----①,圆的方程-----②,则①-②,化简得到,代入②式,求得,则设点坐标为,点坐标为,故,又,则化简得到,,故.故选A.
二、填空题
13. 若变量满足约束条件则的最大值是 .
答案:
解答:
根据不等式组约束条件可知目标函数在处取得最大值为.
14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有个车次的正点率为,有个车次的正点率为,有个车次的正点率为,则经停该站的高铁列车所有车次的平均正点率的估计值为 .
答案:
解答:
平均正点率的估计值.
15. 的内角的对边分别为.已知,则 .
答案:
解析:
根据正弦定理可得,即,显然,所以,故.
16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)
答案:
26
解析:
由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解.