分享
2009年高考重庆理科数学试题及答案(精校版).doc
下载文档

ID:2831030

大小:884KB

页数:13页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2009 年高 重庆 理科 数学试题 答案 精校版
2009年普通高等学校招生全国统一考试(重庆卷) 数学试题卷(理工农医类) 本试卷满分150分,考试时间120分钟 第Ⅰ卷 考生注意: 1.答题前,务必将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效. 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,将试题卷和答题卡一并交回. 参考公式: 如果事件互斥,那么 如果事件相互独立,那么 如果事件在一次试验中发生的概率是,那么次独立重复试验中恰好发生次的概率 以为半径的球体积: 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个备选项中,只有一项是符合题目要求的。 1.直线与圆的位置关系为( ) A.相切 B.相交但直线不过圆心 C.直线过圆心 D.相离 2.已知复数的实部为,虚部为2,则=( ) A. B. C. D. 3.的展开式中的系数是( ) A.16 B.70 C.560 D.1120 4.已知,则向量与向量的夹角是( ) A. B. C. D. 5.不等式对任意实数恒成立,则实数的取值范围为( ) A. B. C. D. 6.锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为( ) A. B. C. D. 7.设的三个内角,向量,,若,则=( ) A. B. C. D. 8.已知,其中,则的值为( ) A.6 B. C. D. 9.已知二面角的大小为,为空间中任意一点,则过点且与平面和平面所成的角都是的直线的条数为( ) A.2 B.3 C.4 D.5 10.已知以为周期的函数,其中。若方程恰有5个实数解,则的取值范围为( ) A. B. C. D. 二、填空题:本大题共5小题,每小题5分,共25分.把答案写在答题卡相应位置上. 11.若,,则 . 12.若是奇函数,则 . 13.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有 种(用数字作答). 14.设,,,,则数列的通项公式= . 15.已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值范围是 . 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.) 设函数. (Ⅰ)求的最小正周期. (Ⅱ)若函数与的图像关于直线对称,求当时的最大值. 17.(本小题满分13分,(Ⅰ)问7分,(Ⅱ)问6分) 某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中: (Ⅰ)两种大树各成活1株的概率; (Ⅱ)成活的株数的分布列与期望. 18.(本小题满分13分,(Ⅰ)问5分,(Ⅱ)问8分) 设函数在处取得极值,且曲线在点处的切线垂直于直线. (Ⅰ)求的值; (Ⅱ)若函数,讨论的单调性. 19.(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分) 如题(19)图,在四棱锥中,且;平面平面,;为的中点,.求: (Ⅰ)点到平面的距离; (Ⅱ)二面角的大小 20.(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分) 已知以原点为中心的椭圆的一条准线方程为,离心率,是椭圆上的动点. (Ⅰ)若的坐标分别是,求的最大值; (Ⅱ)如题(20)图,点的坐标为,是圆上的点,是点在轴上的射影,点满足条件:,.求线段的中点的轨迹方程; 21.(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分) 设个不全相等的正数依次围成一个圆圈. (Ⅰ)若,且是公差为的等差数列,而是公比为的等比数列;数列的前项和满足:,求通项; (Ⅱ)若每个数是其左右相邻两数平方的等比中项,求证:; 2009年普通高等学校招生全国统一考试(重庆卷) 数学试题(理工农医类)答案 一、 选择题:每小题5分,满分50分 . (1) B (2) A (3) D (4) C (5) A (6) C (7) C (8) D (9) B (10) B. 二.填空题:每小题5分,满分25分 . (11) (0,3) (12) (13) 36 (14) (15) (1, ) 三.解答题:满分75分 . (16)(本小题13分) 解:(Ⅰ)= = = 故的最小正周期为T = =8 (Ⅱ)在的图象上任取一点,它关于的对称点 .   由题设条件,点在的图象上,从而           = = 当时,,因此在区间上的最大值为       . (17)(本小题13分) 解:设表示甲种大树成活k株,k=0,1,2   表示乙种大树成活l株,l=0,1,2   则,独立. 由独立重复试验中事件发生的概率公式有 , . 据此算得    , , . , , . (Ⅰ) 所求概率为      . (Ⅱ) 的所有可能值为0,1,2,3,4,且 , , = , . . 综上知有分布列 0 1 2 3 4 P 1/36 1/6 13/36 1/3 1/9 从而,的期望为 (株) 18、(本小题13分) 解(Ⅰ)因 又在x=0处取得极限值,故从而 由曲线y=在(1,f(1))处的切线与直线相互垂直可知 该切线斜率为2,即 (Ⅱ)由(Ⅰ)知, 令 (1)当 (2)当 K=1时,g(x)在R上为增函数 (3)方程有两个不相等实根 当函数 当时,故上为减函数 时,故上为增函数 (19)(本小题12分) 解法一: (Ⅰ)因为AD//BC,且所以从而A点到平面的距离等于D点到平面的距离。 因为平面故,从而,由AD//BC,得,又由知,从而为点A到平面的距离,因此在中 (Ⅱ)如答(19)图1,过E电作交于点G,又过G点作,交AB于H,故为二面角的平面角,记为,过E点作EF//BC,交于点F,连结GF,因平面,故. 由于E为BS边中点,故,在中, ,因,又 故由三垂线定理的逆定理得,从而又可得 因此而在中, 在中,可得,故所求二面角的大小为 解法二: (Ⅰ)如答(19)图2,以S(O)为坐标原点,射线OD,OC分别为x轴,y轴正向,建立空间坐标系,设,因平面 即点A在xoz平面上,因此 又 因AD//BC,故BC⊥平面CSD,即BCS与平面 yOx重合,从而点A到平面BCS的距离为. (Ⅱ)易知C(0,2,0),D(,0,0). 因E为BS的中点. ΔBCS为直角三角形 , 知 设B(0,2, ),>0,则=2,故B(0,2,2),所以E(0,1,1) . 在CD上取点G,设G(),使GE⊥CD . 由故 ①  又点G在直线CD上,即,由=(),则有 ② 联立①、②,解得G= , 故=.又由AD⊥CD,所以二面角E-CD-A的平面角为向量与向量所成的角,记此角为 . 因为=,,所以 故所求的二面角的大小为 . (20)(本小题12分)   解:(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a >b> 0 ). 设,由准线方程得.由得,解得 a = 2 ,c = ,从而 b = 1,椭圆方程为 . 又易知C,D两点是椭圆的焦点,所以, 从而,当且仅当,即点M的坐标为 时上式取等号,的最大值为4 . (II)如图(20)图,设 .因为,故 ① 因为 所以 . ② 记P点的坐标为,因为P是BQ的中点 所以 由因为 ,结合①,②得 故动点P的估计方程为 (21)(本小题12分) 解:(I)因是公比为d的等比数列,从而 由 ,故 解得或(舍去)。因此 又 。解得 从而当时, 当时,由是公比为d的等比数列得 因此 (II)由题意得 有①得 ④ 由①,②,③得, 故. ⑤ 又,故有 .⑥ 下面反证法证明: 若不然,设 若取即,则由⑥得,而由③得 得由②得而 ④及⑥可推得()与题设矛盾 同理若P=2,3,4,5均可得()与题设矛盾,因此为6的倍数 由均值不等式得 由上面三组数内必有一组不相等(否则,从而与题设矛盾),故等号不成立,从而 又,由④和⑥得 因此由⑤得

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开