分享
2012年高考数学真题(理科)(湖北自主命题).doc
下载文档

ID:2830996

大小:968KB

页数:13页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2012 年高 数学 理科 湖北 自主 命题
2012年湖北高考理科数学试题及答案 本试卷共5页,共22题,其中第15、16题为选考题,满分150分。考试用时120分钟。 一、 选择题:本大题共10小题,每小题5分,共50分 ,在每小题给出的四个选项中,只有一项是符合题目要求的 1. 方程 +6x +13 =0的一个根是 A -3+2i B 3+2i C -2 + 3i D 2 + 3i 2 命题“x0∈CRQ, ∈Q ”的否定是 A x0∉CRQ,∈Q B x0∈CRQ ,∉Q C x0∉CRQ , ∈Q D x0∈CRQ ,∉Q 3 已知二次函数y =f(x)的图像如图所示 ,则它与X轴所围图形的面积为 A. B. C. D. 4.已知某几何体的三视图如图所示,则该集合体的体积为 A. B.3π C. D.6π 5.设a∈Z,且0≤a≤13,若512012+a能被13整除,则a= A.0 B.1 C.11 D.12 6.设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则 A. B. C. D, 7.定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”。现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x²;②f(x)=2x;③;④f(x)=ln|x |。 则其中是“保等比数列函数”的f(x)的序号为 A.①② B.③④ C.①③ D.②④ 8.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆。在扇形OAB内随机取一点,则此点取自阴影部分的概率是 A. B. C. D. 9.函数f(x)=xcosx²在区间[0,4]上的零点个数为 A.4 B.5 C.6 D.7 10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式。人们还用过一些类似的近似公式。根据=3.14159…..判断,下列近似公式中最精确的一个是 二、填空题:本大题共6小题,考试共需作答5小题,每小题5分,共25分。请将答案填在答题卡对应题号的位置上。答错位置,书写不清,模棱两可均不得分。 (一)必考题(11-14题) 11.设△ABC的内角A,B,C,所对的边分别是a,b,c。若(a+b-c)(a+b+c)=ab, 则角C=______________。 12.阅读如图所示的程序框图,运行相应的程序,输出的结果s=___________. 13.回文数是指从左到右与从右到左读都一样的正整数。如22,,121,3443,94249等。显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。则 (Ⅰ)4位回文数有______个; (Ⅱ)2n+1(n∈N+)位回文数有______个。 14.如图,双曲线的两顶点为A1,A2,虚轴两端点为,,两焦点为F1,F2。若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D。则 (Ⅰ)双曲线的离心率e=______; (Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值__________。 (二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分。) 15.(选修4-1:几何证明选讲) 如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_____________。 16.(选修4-4:坐标系与参数方程) 在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线与曲线(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为_________。 三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。 17.(本小题满分12分) 已知向量a=,b=,设函数f(x)=a·b+的图像关于直线x=π对称,其中为常数,且 (1) 求函数f(x)的最小正周期; (2) 若y=f(x)的图像经过点求函数f(x)在区间上的取值范围。 18.(本小题满分12分) 已知等差数列{an}前三项的和为-3,前三项的积为8. (1)求等差数列{an}的通项公式; (2)若a2,a3,a1成等比数列,求数列的前n项的和。 19.(本小题满分12分) 如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示), (1)当BD的长为多少时,三棱锥A-BCD的体积最大; (2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小 20.(本小题满分12分) 根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表: 降水量X X<300 300≤X<700 700≤X<900 X≥900 工期延误天数Y 0 2 6 10 历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求: (I)工期延误天数Y的均值与方差; (Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率。 21.(本小题满分13分) 设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1)。当点A在圆上运动时,记点M的轨迹为曲线C。 (I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标; (Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由。 22.(本小题满分14分) (I)已知函数f(x)=rx-xr+(1-r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值; (II)试用(I)的结果证明如下命题: 设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2; (III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题。注:当α为正有理数时,有求道公式(xα)r=αxα-1

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开