温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2012
年高
数学
文科
大纲
解析
2012年全国统一高考数学试卷(文科)(大纲版)
一.选择题
1.(5分)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )
A.A⊆B B.C⊆B C.D⊆C D.A⊆D
2.(5分)函数的反函数是( )
A.y=x2﹣1(x≥0) B.y=x2﹣1(x≥1)
C.y=x2+1(x≥0) D.y=x2+1(x≥1)
3.(5分)若函数是偶函数,则φ=( )
A. B. C. D.
4.(5分)已知α为第二象限角,,则sin2α=( )
A. B. C. D.
5.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为( )
A. B. C. D.
6.(5分)已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则当n>1时,Sn=( )
A.()n﹣1 B.2n﹣1 C.()n﹣1 D.(﹣1)
7.(5分)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序有( )
A.240种 B.360种 C.480种 D.720种
8.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为( )
A.2 B. C. D.1
9.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=( )
A. B. C. D.
10.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=( )
A. B. C. D.
11.(5分)已知x=lnπ,y=log52,,则( )
A.x<y<z B.z<x<y C.z<y<x D.y<z<x
12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,.定点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为( )
A.8 B.6 C.4 D.3
二、填空题(共4小题,每小题5分,共20分,在试卷上作答无效)
13.(5分)的展开式中x2的系数为 .
14.(5分)若x,y满足约束条件则z=3x﹣y的最小值为 .
15.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x= .
16.(5分)已知正方体ABCD﹣A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为 .
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.在试卷上作答无效!
17.(10分)△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.
18.(12分)已知数列{an}中,a1=1,前n项和
(1)求a2,a3;
(2)求{an}的通项公式.
19.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.
20.(12分)乒乓球比赛规则规定:一局比赛,对方比分在10平前,一方连续发球2次后,对方再连续发球两次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1:2的概率;
(2)求开始第5次发球时,甲领先得分的概率.
21.(12分)已知函数.
(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.
22.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.
2012年全国统一高考数学试卷(文科)(大纲版)
参考答案与试题解析
一.选择题
1.(5分)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )
A.A⊆B B.C⊆B C.D⊆C D.A⊆D
【考点】1E:交集及其运算.菁优网版权所有
【专题】11:计算题.
【分析】直接利用四边形的关系,判断选项即可.
【解答】解:因为菱形是平行四边形的特殊情形,所以D⊂A,
矩形与正方形是平行四边形的特殊情形,所以B⊂A,C⊂A,
正方形是矩形,所以C⊆B.
故选:B.
【点评】本题考查集合的基本运算,几何图形之间的关系,基础题.
2.(5分)函数的反函数是( )
A.y=x2﹣1(x≥0) B.y=x2﹣1(x≥1) C.y=x2+1(x≥0) D.y=x2+1(x≥1)
【考点】4R:反函数.菁优网版权所有
【专题】11:计算题.
【分析】直接利用反函数的求法求解即可.
【解答】解:因为函数,解得x=y2﹣1,
所以函数的反函数是y=x2﹣1(x≥0).
故选:A.
【点评】本题考查函数的反函数的求法,考查计算能力.
3.(5分)若函数是偶函数,则φ=( )
A. B. C. D.
【考点】H6:正弦函数的奇偶性和对称性;HK:由y=Asin(ωx+φ)的部分图象确定其解析式.菁优网版权所有
【专题】11:计算题.
【分析】直接利用函数是偶函数求出ϕ的表达式,然后求出ϕ的值.
【解答】解:因为函数是偶函数,
所以,k∈z,所以k=0时,ϕ=∈[0,2π].
故选:C.
【点评】本题考查正弦函数的奇偶性,三角函数的解析式的应用,考查计算能力.
4.(5分)已知α为第二象限角,,则sin2α=( )
A. B. C. D.
【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.菁优网版权所有
【专题】11:计算题.
【分析】直接利用同角三角函数的基本关系式,求出cosα,然后利用二倍角公式求解即可.
【解答】解:因为α为第二象限角,,
所以cosα=﹣=﹣.
所以sin2α=2sinαcosα==.
故选:A.
【点评】本题考查二倍角的正弦,同角三角函数间的基本关系的应用,考查计算能力.
5.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为( )
A. B.
C. D.
【考点】K3:椭圆的标准方程;K4:椭圆的性质.菁优网版权所有
【专题】11:计算题.
【分析】确定椭圆的焦点在x轴上,根据焦距为4,一条准线为x=﹣4,求出几何量,即可求得椭圆的方程.
【解答】解:由题意,椭圆的焦点在x轴上,且
∴c=2,a2=8
∴b2=a2﹣c2=4
∴椭圆的方程为
故选:C.
【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,属于基础题.
6.(5分)已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则当n>1时,Sn=( )
A.()n﹣1 B.2n﹣1 C.()n﹣1 D.(﹣1)
【考点】8H:数列递推式.菁优网版权所有
【专题】35:转化思想;54:等差数列与等比数列.
【分析】利用递推关系与等比数列的通项公式即可得出.
【解答】解:∵Sn=2an+1,得Sn=2(Sn+1﹣Sn),即3Sn=2Sn+1,
由a1=1,所以Sn≠0.则=.
∴数列{Sn}为以1为首项,公比为的等比数列
∴Sn=.
故选:A.
【点评】本题考查了递推关系与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
7.(5分)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序有( )
A.240种 B.360种 C.480种 D.720种
【考点】D9:排列、组合及简单计数问题.菁优网版权所有
【专题】11:计算题.
【分析】直接从中间的4个演讲的位置,选1个给甲,其余全排列即可.
【解答】解:因为6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,甲先安排在除开始与结尾的位置还有个选择,剩余的元素与位置进行全排列有,所以甲只能在中间的4个位置,所以不同的演讲次序有=480种.
故选:C.
【点评】本题考查排列、组合以及简单的计数原理的应用,考查计算能力.
8.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为( )
A.2 B. C. D.1
【考点】MI:直线与平面所成的角.菁优网版权所有
【专题】11:计算题.
【分析】先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可
【解答】解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,
∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,
在三棱锥E﹣ABD中,VE﹣ABD=S△ABD×EC=××2×2×=
在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD=×2×=2
∴VA﹣BDE=×S△EBD×h=×2×h=
∴h=1
故选:D.
【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题
9.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=( )
A. B. C. D.
【考点】9Y:平面向量的综合题.菁优网版权所有
【分析】由题意可得,CA⊥CB,CD⊥AB,由射影定理可得,AC2=AD•AB可求AD,进而可求,从而可求与的关系,进而可求
【解答】解:∵•=0,
∴CA⊥CB
∵CD⊥AB
∵||=1,||=2
∴AB=
由射影定理可得,AC2=AD•AB
∴
∴
∴==
故选:D.
【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用,向量的数量积的性质的应用.
10.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=( )
A. B. C. D.
【考点】KC:双曲线的性质.菁优网版权所有
【专题】11:计算题.
【分析】根据双曲线的定义,结合|PF1|=2|PF2|,利用余弦定理,即可求cos∠F1PF2的值.
【解答】解:将双曲线方程x2﹣y2=2化为标准方程﹣=1,则a=,b=,c=2,
设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a可得m=2,
∴|PF1|=4,|PF2|=2,
∵|F1F2|=2c=4,
∴cos∠F1PF2====.
故选:C.
【点评】本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.
11.(5分)已知x=lnπ,y=log52,,则( )
A.x<y<z B.z<x<y C.z<y<x D.y<z<x
【考点】72:不等式比较大小.菁优网版权所有
【专题】11:计算题;16:压轴题.
【分析】利用x=lnπ>1,0<y=log52<,1>z=>,即可得到答案.
【解答】解:∵x=lnπ>lne=1,
0<log52<log5=,即y∈(0,);
1=e0>=>=,即z∈(,1),
∴y<z<x.
故选:D.
【点评】本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.
12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,.定点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为( )
A.8 B.6 C.4 D.3
【考点】IQ:与直线关于点、直线对称的直线方程.菁优网版权所有
【专题】15:综合题;16:压轴题.
【分析】根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.
【解答】解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,在DA,且DG=,第三次碰撞点为H,在DC上,且DH=,第四次碰撞点为M,在CB上,且CM=,第五次碰撞点为N,在DA上,且AN=,第六次回到E点,AE=.
故需要碰撞6次即可.
故选:B.
【点评】本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的位置,从而可得反射的次数,属于难题
二、填空题(共4小题,每小题5分,共20分,在试卷上作答无效)
13.(5分)的展开式中x2的系数为 7 .
【考点】DA:二项式定理.菁优网版权所有
【专题】11:计算题.
【分析】直接利用二项式定理的通项公式,求出x2的系数即可.
【解答】解:因为的展开式的通项公式为:=,
当8﹣2r=2,即r=3时,的展开式中x2的系数为:=7.
故答案为:7.
【点评】本题考查二项式定理的应用,特定项的求法,考查计算能力.
14.(5分)若x,y满足约束条件则z=3x﹣y的最小值为 ﹣1 .
【考点】7C:简单线性规划.菁优网版权所有
【专题】11:计算题.
【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小,结合图形可求
【解答】解:作出不等式组表示的平面区域,如图所示
由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小
结合图形可知,当直线z=3x﹣y过点C时z最小
由可得C(0,1),此时z=﹣1
故答案为:﹣1
【点评】本题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z的几何意义,属于基础试题
15.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x= .
【考点】GP:两角和与差的三角函数;HW:三角函数的最值.菁优网版权所有
【专题】11:计算题;16:压轴题.
【分析】利用辅助角公式将y=sinx﹣cosx化为y=2sin(x﹣)(0≤x<2π),即可求得y=sinx﹣cosx(0≤x<2π)取得最大值时x的值.
【解答】解:∵y=sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣).
∵0≤x<2π,
∴﹣≤x﹣<,
∴ymax=2,此时x﹣=,
∴x=.
故答案为:.
【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角公式的应用与正弦函数的性质,将y=sinx﹣cosx(0≤x<2π)化为y=2sin(x﹣)(0≤x<2π)是关键,属于中档题.
16.(5分)已知正方体ABCD﹣A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为 .
【考点】L2:棱柱的结构特征;LM:异面直线及其所成的角.菁优网版权所有
【专题】11:计算题;16:压轴题.
【分析】设正方体ABCD﹣A1B1C1D1棱长为2,以DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,则,=(0,2,﹣1),由此利用向量法能够求出异面直线AE与D1F所成角的余弦值.
【解答】解:设正方体ABCD﹣A1B1C1D1棱长为2,以DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
则A(2,0,0),E(2,2,1)D1(0,0,2),F(0,2,1)
∴,=(0,2,﹣1),
设异面直线AE与D1F所成角为θ,
则cosθ=|cos<,>|=||=.
故答案为:.
【点评】本题考查异面直线所成角的余弦值的求法,是基础题.解题时要认真审题,仔细解答,注意向量法的合理运用.
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.在试卷上作答无效!
17.(10分)△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.
【考点】8N:数列与三角函数的综合.菁优网版权所有
【专题】15:综合题;2A:探究型.
【分析】由题设条件,可先由A,B,C成等差数列,及A+B+C=π得到B=,及A+C=,再由正弦定理将条件2b2=3ac转化为角的正弦的关系,结合cos(A+C)=cosAcosC﹣sinAsinC求得cosAcosC=0,从而解出A
【解答】解:由A,B,C成等差数列,及A+B+C=π得B=,故有A+C=
由2b2=3ac得2sin2B=3sinAsinC=,
所以sinAsinC=
所以cos(A+C)=cosAcosC﹣sinAsinC=cosAcosC﹣
即cosAcosC﹣=﹣,可得cosAcosC=0
所以cosA=0或cosC=0,即A是直角或C是直角
所以A是直角,或A=
【点评】本题考查数列与三角函数的综合,涉及了三角形的内角和,两角和的余弦公式,正弦定理的作用边角互化,解题的关键是熟练掌握等差数列的性质及三角函数的相关公式,本题考查了转化的思想,有一定的探究性及综合性
18.(12分)已知数列{an}中,a1=1,前n项和
(1)求a2,a3;
(2)求{an}的通项公式.
【考点】8H:数列递推式.菁优网版权所有
【专题】11:计算题.
【分析】(1)直接利用已知,求出a2,a3;
(2)利用已知关系式,推出数列相邻两项的关系式,利用累积法,求出数列的通项公式即可.
【解答】解:(1)数列{an}中,a1=1,前n项和,
可知,得3(a1+a2)=4a2,
解得a2=3a1=3,由,
得3(a1+a2+a3)=5a3,
解得a3==6.
(2)由题意知a1=1,
当n>1时,有an=sn﹣sn﹣1=,
整理得,
于是a1=1,
a2=a1,
a3=a2,
…,
an﹣1=an﹣2,
,
将以上n个式子两端分别相乘,
整理得:.
综上{an}的通项公式为
【点评】本题考查数列的项的求法,累积法的应用,考查计算能力.
19.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.
【考点】LW:直线与平面垂直;MI:直线与平面所成的角;MM:向量语言表述线面的垂直、平行关系.菁优网版权所有
【专题】11:计算题.
【分析】(I)先由已知建立空间直角坐标系,设D(,b,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;
(II)先求平面PAB的法向量,再求平面PBC的法向量,利用两平面垂直的性质,即可求得b的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角
【解答】解:(I)以A为坐标原点,建立如图空间直角坐标系A﹣xyz,
设D(,b,0),则C(2,0,0),P(0,0,2),E(,0,),B(,﹣b,0)
∴=(2,0,﹣2),=(,b,),=(,﹣b,)
∴•=﹣=0,•=0
∴PC⊥BE,PC⊥DE,BE∩DE=E
∴PC⊥平面BED
(II)=(0,0,2),=(,﹣b,0)
设平面PAB的法向量为=(x,y,z),则
取=(b,,0)
设平面PBC的法向量为=(p,q,r),则
取=(1,﹣,)
∵平面PAB⊥平面PBC,∴•=b﹣=0.故b=
∴=(1,﹣1,),=(﹣,﹣,2)
∴cos<,>==
设PD与平面PBC所成角为θ,θ∈[0,],则sinθ=
∴θ=30°
∴PD与平面PBC所成角的大小为30°
【点评】本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题
20.(12分)乒乓球比赛规则规定:一局比赛,对方比分在10平前,一方连续发球2次后,对方再连续发球两次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1:2的概率;
(2)求开始第5次发球时,甲领先得分的概率.
【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CA:n次独立重复试验中恰好发生k次的概率.菁优网版权所有
【专题】5I:概率与统计.
【分析】(Ⅰ)记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2,Bi表示事件:第3次和第4次这两次发球,甲共得i分,i=0,1,2,A表示事件:第3次发球,甲得1分,B表示事件:开始第4次发球时,甲、乙的比分为1比2,C表示事件:开始第5次发球时,甲得分领先.B=,由此能求出开始第4次发球时,甲、乙的比分为1:2的概率.
(Ⅱ),P(B1)=2×0.4×0.6=0.48,,,由C=A1•B2+A2•B1+A2•B2,能求出开始第5次发球时,甲领先得分的概率.
【解答】解:(Ⅰ)记Ai表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2,
Bi表示事件:第3次和第4次这两次发球,甲共得i分,i=0,1,2,
A表示事件:第3次发球,甲得1分,
B表示事件:开始第4次发球时,甲、乙的比分为1比2,
C表示事件:开始第5次发球时,甲得分领先.
∴B=,
P(A)=0.4,P(A0)=0.42=0.16,
P(A1)=2×0.6×0.4=0.48,
P(B)=
=P(A0•A)+P()
=
=0.16×0.4+0.48×(1﹣0.4)
=0.352.
答:开始第4次发球时,甲、乙的比分为1:2的概率是0.352.
(Ⅱ),
P(B1)=2×0.4×0.6=0.48,
,
,
∵C=A1•B2+A2•B1+A2•B2,
∴P(C)=P(A1•B2+A2B1+A2•B2)
=P(A1•B2)+P(A2•B1)+P(A2•B2)
=P(A1)P(B)+P(A2)P(B1)+P(A2)P(B2)
=0.48×0.16+0.36×0.48+0.36×0.16
=0.3072.
答:开始第5次发球时,甲领先得分的概率是0.3072.
【点评】本题考查事件的概率的求法,解题时要认真审题,仔细解答,注意n次独立重复试验的性质和公式的灵活运用.
21.(12分)已知函数.
(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.
【考点】6B:利用导数研究函数的单调性;6C:函数在某点取得极值的条件.菁优网版权所有
【专题】11:计算题;16:压轴题;3:解题思想;32:分类讨论.
【分析】(1)先对函数进行求导,通过a的取值,求出函数的根,然后通过导函数的值的符号,推出函数的单调性.
(2)根据导函数的根,判断a的范围,进而解出直线l的方程,利用l与x轴的交点为(x0,0),可解出a的值.
【解答】解:(1)f′(x)=x2+2x+a=(x+1)2+a﹣1.
①当a≥1时,f′(x)≥0,
且仅当a=1,x=﹣1时,f′(x)=0,
所以f(x)是R上的增函数;
②当a<1时,f′(x)=0,有两个根,
x1=﹣1﹣,x2=﹣1+,
当x∈时,f′(x)>0,f(x)是增函数.
当x∈时,f′(x)<0,f(x)是减函数.
当x∈时,f′(x)>0,f(x)是增函数.
(2)由题意x1,x2,是方程f′(x)=0的两个根,
故有a<1,,,
因此=
=
==,
同理.
因此直线l的方程为:y=.
设l与x轴的交点为(x0,0)得x0=,
=,
由题设知,点(x0,0)在曲线y=f(x)上,故f(x0)=0,
解得a=0,或a=或a=
【点评】本题主要考查函数在某点取得极值的条件,考查分类讨论,函数与方程的思想,考查计算能力.
22.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.
【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲线的综合.菁优网版权所有
【专题】15:综合题;16:压轴题.
【分析】(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M(1,),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;
(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D的坐标,从而可求D到l的距离.
【解答】解:(Ⅰ)设A(x0,(x0+1)2),
∵y=(x+1)2,y′=2(x+1)
∴l的斜率为k=2(x0+1)
当x0=1时,不合题意,所以x0≠1
圆心M(1,),MA的斜率.
∵l⊥MA,∴2(x0+1)×=﹣1
∴x0=0,∴A(0,1),
∴r=|MA|=;
(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1
若该直线与圆M相切,则圆心M到该切线的距离为
∴
∴t2(t2﹣4t﹣6)=0
∴t0=0,或t1=2+,t2=2﹣
抛物线C在点(ti,(ti+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为
y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣③
②﹣③:x=
代入②可得:y=﹣1
∴D(2,﹣1),
∴D到l的距离为
【点评】本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.