2022年普通高等学校招生全国统一考试数学(天津卷)2022.06.一、选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.【答案】A【解析】【分析】先求出,再根据交集的定义可求.【详解】,故,故选:A.2.“为整数”是“为整数”的()A.充分不必要B.必要不充分C.充分必要D.既不允分也不必要【答案】A【解析】【分析】依据充分不必要条件的定义去判定“为整数”与“为整数”的逻辑关系即可.【详解】由题意,若为整数,则为整数,故充分性成立;当时,为整数,但不为整数,故必要性不成立;所以“为整数”是“为整数”的充分不必要条件.故选:A.3.函数的图像为()A.B.C.D.【答案】D【解析】【分析】分析函数的定义域、奇偶性、单调性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,且,函数为奇函数,A选项错误;又当时,,C选项错误;当时,函数单调递增,故B选项错误;故选:D.4.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.8B.12C.16D.18【答案】B【解析】【分析】结合已知条件和频率分布直方图求出志愿者的总人数,进而求出第三组的总人数,从而可以求得结果.【详解】志愿者的总人数为=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.故选:B.5.已知,,,则()A.B.C.D.【答案】C【解析】【分析】利用幂函数、对数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,故.故答案为:C.6.化简的值为()A.1B.2C.4D.6【答案】B【解析】【分析】根据对数的性质可求代数式的值.【详解】原式,故选:B7.已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双曲线的渐近线交于点A,若,则双曲线的标准方程为()A.B.C.D.【答案】C【解析】【分析】由已知可得出的值,求出点的坐标,分析可得,由此可得出关于、、的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线的准线方程为,则,则、,不妨设点为第二象限内的点,联立,可得,即点,因为且,则为等腰直角三角形,且,即,可得,所以,,解得,因此,双曲线的标准方程为....