温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2010
年高
数学
理科
江西
自主
命题
2010年江西高考理科数学真题及答案
第Ⅰ卷
一、选择题:本大题共12小题,每个小题5分,共60高☆考♂资♀源*网分。在每个小题给出的四个选项中,有一项是符合题目要求的高☆考♂资♀源*网。
1.已知(x+i)(1-i)=y,则实数x,y分别为( )
A.x=-1,y=1 B. x=-1,y=2
C. x=1,y=1 D. x=1,y=2
2.若集合,,则=( )
A. B.
C. D.
3.不等式 高☆考♂资♀源*网的解集是( )
A. B. C. D.
4. ( )
A. B. C. 2 D. 不存在
5.等比数列中,,=4,函数,则( )
A. B. C. D.
6. 展开式中不含项的系数的和为( )高☆考♂资♀源*网
A.-1 B.0 C.1 D.2
7.E,F是等腰直角△ABC斜边AB上的三等分点,则( )
A. B. C. D.
8.直线与圆相交于M,N两点,若,则k的取值范围是
A. B. C. D.
9.给出下列三个命题:
①函数与是同一函数;高☆考♂资♀源*网
②若函数与的图像关于直线对称,则函数与的图像也关于直线对称;
③若奇函数对定义域内任意x都有,则为周期函数。
其中真命题是
A. ①② B. ①③ C.②③ D. ②高☆考♂资♀源*网
10.过正方体的顶点A作直线L,使L与棱,,所成的角都相等,这样的直线L可以作
A.1条 B.2条 C.3条 D.4条
11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。国王用方法一、二能发现至少一枚劣币的概率分别为和,则
A. = B. < C. > D。以上三种情况都有可能
12.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为,则导函数的图像大致为
高☆考♂资♀源*网
二、填空题:本大题共4小题,每小题4分,共16分。请把答案填在答题卡上。
13.已知向量,满足,, 与的夹角为60°,则
14.将6位志愿者分成4组,其中两个各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有 种(用数字作答)。
高☆考♂资♀源*网
15.点在双曲线的右支上,若点A到右焦点的距离等于,则=
16.如图,在三棱锥中,三条棱,,两两垂直,且>>,分别经过三条棱,,作一个截面平分三棱锥的体积,截面面积依次为,,,则,,的大小关系为 。
三、解答题:本大题共6高☆考♂资♀源*网小题,共74分,解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12高☆考♂资♀源*网分)
已知函数。
(1) 当m=0时,求在区间上的取值范围;
(2) 当时,,求m的值。
18. (本小题满分高☆考♂资♀源*网12分)
某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止。令表示走出迷宫所需的时间。
(1) 求的分布列;
(2) 求的数学期望。
19. (本小题满分高☆考♂资♀源*网12分)
设函数。
(1)当a=1时,求的单调区间。
(2)若在上的最大值为,求a的值。
20. (本小题满分12分)
如图△BCD与△MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,。
(1) 求点A到平面MBC的距离;
(2) 求平面ACM与平面BCD所成二面角的正弦值。
21. (本小题满分高☆考♂资♀源*网12分)
设椭圆,抛物线。
(1) 若经过的两个焦点,求的离心率;
(2) 设A(0,b),,又M、N为与不在y轴上的两个交点,若△AMN的垂心为,且△QMN的重心在上,求椭圆和抛物线的方程。
22. (本小题满分14分高☆考♂资♀源*网)
证明以下命题:
(1) 对任一正整a,都存在整数b,c(b<c),使得成等差数列。
(2) 存在无穷多个互不相似的三角形△,其边长为正整数且成等差数列。
2010年江西高考理科数学真题及答案
第Ⅰ卷
一、选择题:本大题共12小题,每个小题5分,共60高☆考♂资♀源*网分。在每个小题给出的四个选项中,有一项是符合题目要求的高☆考♂资♀源*网。
1.已知(x+i)(1-i)=y,则实数x,y分别为( )
A.x=-1,y=1 B. x=-1,y=2
C. x=1,y=1 D. x=1,y=2
【答案】 D
【解析】考查复数的乘法运算。可采用展开计算的方法,得,没有虚部,x=1,y=2.
2.若集合,,则=( )
A. B.
C. D.
【答案】 C
【解析】考查集合的性质与交集以及绝对值不等式运算。常见的解法为计算出集合A、B;,,解得。在应试中可采用特值检验完成。
3.不等式 高☆考♂资♀源*网的解集是( )
A. B. C. D.
【答案】 A
【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.,解得A。
或者选择x=1和x=-1,两个检验进行排除。
4. ( )
A. B. C. 2 D. 不存在
【答案】B
【解析】考查等比数列求和与极限知识.解法一:先求和,然后对和取极限。
5.等比数列中,,=4,函数,则( )
A. B. C. D.
【答案】C
【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x项均取0,则只与函数的一次项有关;得:。
6. 展开式中不含项的系数的和为( )高☆考♂资♀源*网
A.-1 B.0 C.1 D.2
【答案】B
【解析】考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反。采用赋值法,令x=1得:系数和为1,减去项系数即为所求,答案为0.
7.E,F是等腰直角△ABC斜边AB上的三等分点,则( )
A. B. C. D.
【答案】D
【解析】考查三角函数的计算、解析化应用意识。
解法1:约定AB=6,AC=BC=,由余弦定理CE=CF=,再由余弦定理得,
解得
解法2:坐标化。约定AB=6,AC=BC=,F(1,0),E(-1,0),C(0,3)利用向量的夹角公式得
,解得。
8.直线与圆相交于M,N两点,若,则k的取值范围是
A. B. C. D.
【答案】A
【解析】考查直线与圆的位置关系、点到直线距离公式,重点考察数形结合的运用.
解法1:圆心的坐标为(3.,2),且圆与y轴相切.当,由点到直线距离公式,解得;
解法2:数形结合,如图由垂径定理得夹在两直线之间即可, 不取,排除B,考虑区间不对称,排除C,利用斜率估值,选A
9.给出下列三个命题:
①函数与是同一函数;高☆考♂资♀源*网
②若函数与的图像关于直线对称,则函数与的图像也关于直线对称;
③若奇函数对定义域内任意x都有,则为周期函数。
其中真命题是
A. ①② B. ①③ C.②③ D. ②
【答案】C
【解析】考查相同函数、函数对称性的判断、周期性知识。考虑定义域不同,①错误;排除A、B,验证③, ,又通过奇函数得,所以f(x)是周期为2的周期函数,选择C。
高☆考♂资♀源*网
10.过正方体的顶点A作直线L,使L与棱,,所成的角都相等,这样的直线L可以作
A.1条 B.2条 C.3条 D.4条
【答案】D
【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转化的能力。第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条。
11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。国王用方法一、二能发现至少一枚劣币的概率分别为和,则
A. = B. < C. > D。以上三种情况都有可能
【答案】B
【解析】考查不放回的抽球、重点考查二项分布的概率。本题是北师大版新课标的课堂作业,作为旧大纲的最后一年高考,本题给出一个强烈的导向信号。方法一:每箱的选中的概率为
,总概率为;同理,方法二:每箱的选中的概率为,总事件的概率为,作差得<。
12.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为,则导函数的图像大致为
【答案】A
【解析】本题考查函数图像、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力。最初零时刻和最后终点时刻没有变化,导数取零,排除C;总面积一直保持增加,没有负的改变量,排除B;考察A、D的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,产生中断,选择A。
高☆考♂资♀源*网
二、填空题:本大题共4小题,每小题4分,共16分。请把答案填在答题卡上。
13.已知向量,满足,, 与的夹角为60°,则
【答案】
【解析】考查向量的夹角和向量的模长公式,以及向量三角形法则、余弦定理等知识,如图,由余弦定理得:
14.将6位志愿者分成4组,其中两个各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有 种(用数字作答)。
【答案】 1080
【解析】考查概率、平均分组分配问题等知识,重点考查化归转化和应用知识的意识。先分组,考虑到有2个是平均分组,得,再全排列得:
高☆考♂资♀源*网
15.点在双曲线的右支上,若点A到右焦点的距离等于,则=
【答案】 2
【解析】考查圆锥曲线的基本概念和第二定义的转化,读取a=2.c=6,,
16.如图,在三棱锥中,三条棱,,两两垂直,且>>,分别经过三条棱,,作一个截面平分三棱锥的体积,截面面积依次为,,,则,,的大小关系为 。
【答案】
【解析】考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证结论,特殊化,令边长为1,2,3得。
三、解答题:本大题共6高☆考♂资♀源*网小题,共74分,解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12高☆考♂资♀源*网分)
已知函数。
(1) 当m=0时,求在区间上的取值范围;
(2) 当时,,求m的值。
【解析】考查三角函数的化简、三角函数的图像和性质、已知三角函数值求值问题。依托三角函数化简,考查函数值域,作为基本的知识交汇问题,考查基本三角函数变换,属于中等题.
解:(1)当m=0时,
,由已知,得
从而得:的值域为
(2)
化简得:
当,得:,,
代入上式,m=-2.
18. (本小题满分高☆考♂资♀源*网12分)
某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止。令表示走出迷宫所需的时间。
(3) 求的分布列;
(4) 求的数学期望。
【解析】考查数学知识的实际背景,重点考查相互独立事件的概率乘法公式计算事件的概率、随机事件的数学特征和对思维能力、运算能力、实践能力的考查。
(1) 必须要走到1号门才能走出,可能的取值为1,3,4,6
,,,
1
3
4
6
分布列为:
(2)小时
19. (本小题满分高☆考♂资♀源*网12分)
设函数。
(1)当a=1时,求的单调区间。
(2)若在上的最大值为,求a的值。
【解析】考查函数导数运算、利用导数处理函数最值等知识。
解:对函数求导得:,定义域为(0,2)
(1) 单调性的处理,通过导数的零点进行穿线判别符号完成。
当a=1时,令
当为增区间;当为减函数。
(2) 区间上的最值问题,通过导数得到单调性,结合极值点和端点的比较得到,确定
待定量a的值。
当有最大值,则必不为减函数,且>0,为单调递增区间。
最大值在右端点取到。。
20. (本小题满分12分)
如图△BCD与△MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,。
(3) 求点A到平面MBC的距离;
(4) 求平面ACM与平面BCD所成二面角的正弦值。
【解析】本题以图形拼折为载体主要考查了考查立体图形的空间感、点到直线的距离、二面角、空间向量、二面角平面角的判断有关知识,同时也考查了空间想象能力和推理能力
解法一:(1)取CD中点O,连OB,OM,则OB⊥CD,
OM⊥CD.又平面平面,则MO⊥平面,所以MO∥AB,A、B、O、M共面.延长AM、BO相交于E,则∠AEB就是AM与平面BCD所成的角.OB=MO=,MO∥AB,MO//面ABC,M、O到平面ABC的距离相等,作OHBC于H,连MH,则MHBC,求得:
OH=OCsin600=,MH=,利用体积相等得:。
(2)CE是平面与平面的交线.
由(1)知,O是BE的中点,则BCED是菱形.
作BF⊥EC于F,连AF,则AF⊥EC,∠AFB就是二面角A-EC-B的平面角,设为.
因为∠BCE=120°,所以∠BCF=60°.
,
,
所以,所求二面角的正弦值是.
【点评】传统方法在处理时要注意到辅助线的处理,一般采用射影、垂线、平行线等特殊位置的元素解决
解法二:取CD中点O,连OB,OM,则OB⊥CD,OM⊥CD,又平面平面,则MO⊥平面.
以O为原点,直线OC、BO、OM为x轴,y轴,z轴,建立空间直角坐标系如图.
OB=OM=,则各点坐标分别为O(0,0,0),C(1,0,0),M(0,0,),B(0,-,0),A(0,-,2),
(1)设是平面MBC的法向量,则,
,由得;由得;取,则距离
(2),.
设平面ACM的法向量为,由得.解得,,取.又平面BCD的法向量为,则
设所求二面角为,则.
【点评】向量方法作为沟通代数和几何的工具在考察中越来越常见,此类方法的要点在于建立恰当的坐标系,便于计算,位置关系明确,以计算代替分析,起到简化的作用,但计算必须慎之又慎
21. (本小题满分高☆考♂资♀源*网12分)
设椭圆,抛物线。
(3) 若经过的两个焦点,求的离心率;
(4) 设A(0,b),,又M、N为与不在y轴上的两个交点,若△AMN的垂心为,且△QMN的重心在上,求椭圆和抛物线的方程。
【解析】考查椭圆和抛物线的定义、基本量,通过交点三角形来确认方程。
(1)由已知椭圆焦点(c,0)在抛物线上,可得:,由
。
(2)由题设可知M、N关于y轴对称,设,由的垂心为B,有
。
由点在抛物线上,,解得:
故,得重心坐标.
由重心在抛物线上得:,,又因为M、N在椭圆上得:,椭圆方程为,抛物线方程为。
22. (本小题满分14分高☆考♂资♀源*网)
证明以下命题:
(3) 对任一正整a,都存在整数b,c(b<c),使得成等差数列。
(4) 存在无穷多个互不相似的三角形△,其边长为正整数且成等差数列。
【解析】作为压轴题,考查数学综合分析问题的能力以及创新能力。
(1)考虑到结构要证,;类似勾股数进行拼凑。
证明:考虑到结构特征,取特值满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立。
结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷。
证明:当成等差数列,则,
分解得:
选取关于n的一个多项式,做两种途径的分解
对比目标式,构造,由第一问结论得,等差数列成立,
考察三角形边长关系,可构成三角形的三边。
下证互不相似。
任取正整数m,n,若△m,△相似:则三边对应成比例,
由比例的性质得:,与约定不同的值矛盾,故互不相似。