2008
年高
数学
文科
湖北
自主
命题
2008年湖北高考文科数学真题及答案
本试卷共4页,满分150分,考试时间120分钟.
★祝考试顺利★
注间事项:
1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置
2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.
3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效.
4.考试结束,请将本试题卷和答题卡一并上交.
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设a=(1,-2), b=(-3,4),c=(3,2),则(a+2b)·c=
A. B.0 C.-3 D.-11
2. 10的展开式中常数项是
A.210 B. C. D.-105
3.若集合
A. “”是“”的充分条件但不是必要条件
B. “”是“”的必要条件但不是充分条件
C. “”是“”的充要条件
D. “”既不是“”的充分条件也不是“”的必要条件
4.用与球必距离为1的平面去截球,所得的截面面积为,则球的体积为
A. B. C. D.
5.在平面直角坐标系中,满足不等式组的点的集合用阴影表示为下列图中的
6.已知在R上是奇函数,且满足 当时, ,则 =
A.-2 B.2 C.-98 D.98
7.将函数的图象F向右平移个单位长度得到图象F′,若F′的一条对称轴是直线则的一个可能取值是
A. B. C. D.
8. 函数的定义域为
A. B.
C. D.
9.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为
A.100 B.110 C.120 D.180
10.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用和分别表示椭圆轨道I和Ⅱ的焦距,用和分别表示椭圆轨道I和Ⅱ的长轴的长,给出下列式子:
①②③④其中正确式子的序号是
A.①③ B.②③ C.①④ D.②④
二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上.
11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的员工人数是 .
12.在△ABC中,a,b,c分别是角A,B,C所对的边,已知则
A= .
13.方程的实数解的个数为 .
14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 .
15.圆的圆心坐标为 ,和圆C关于直线对称的圆C′的普通方程是 .
三、解答题:本大题共6分小题,共75分,解答应写出文字说明,证明过程或演算步骤.
16.(本小题满12分)
已知函数
(Ⅰ)将函数化简成的形式,并指出的周期;
(Ⅱ)求函数上的最大值和最小值
17.(本小题满分12分)
已知函数(m为常数,且m>0)有极大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率为-5的直线是曲线的切线,求此直线方程。
18.(本小题满分12分)
如图,在直三棱柱中,平面侧面
(Ⅰ)求证:
(Ⅱ)若,直线AC与平面所成的角为,二面角
19.(本不题满分12分)
如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm,怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?
20(本小题满分13分)
已知双曲线的两个焦点为在双曲线C上.
(Ⅰ)求双曲线C的方程;
(Ⅱ)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,
若△OEF的面积为求直线l的方程
21.(本小题满分14分)
已知数列{an}和{bn}满足:a1=,an+1=,bn=(-1)n(an-3n+21),其中为实数,为正整数。
(I)证明:对任意实数,数列{an}不是等比数列;
(II)证明:当
(III)设为数列的前n项和,是否存在实数,使得对任意正整数n,都有 若存在,求的取值范围;若不存在,说明理由.
参考答案
一、选择题:本题考查基础知识和基本运算.第小题5分,满分50分.
1.C 2.B 3.A 4.D 5.C 6.A 7.A 8.D 9.B 10.B
二、填空题:本题考查基础知识和基本运算,第小题5分,满分25分.
11. 10 12. 30°(或) 13. 2 14. 0.98
15.(3,-2),(x+2)2+(y-3)2=16(或x2+y2+4x-6y-3=0)
三、解答题:本题共6小题,共75分.
16.本小题主要考查三角函数的恒等变换、周期性、单调性和最值等基本知识和运算能力.
(满分12分)
解:(Ⅰ)f(x)=sinx+.
故f(x)的周期为2kπ{k∈Z且k≠0}.
(Ⅱ)由π≤x≤π,得.因为f(x)=在[]上是减函数,在[]上是增函数.
故当x=时,f(x)有最小值-;而f(π)=-2,f(π)=-<-2,
所以当x=π时,f(x)有最大值-2.
17.本小题主要考查应用导数研究函数性质的方法和基本运算能力.(满分12分)
解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,则x=-m或x=m,
当x变化时,f’(x)与f(x)的变化情况如下表:
x
(-∞,-m)
-m
(-m,)
(,+∞)
f’(x)
+
0
-
0
+
f (x)
极大值
极小值
从而可知,当x=-m时,函数f(x)取得极大值9,
即f(-m)=-m3+m3+m3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,
依题意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.
又f(-1)=6,f(-)=,
所以切线方程为y-6=-5(x+1), 或y-=-5(x+),
即5x+y-1=0,或135x+27y-23=0.
18.本小题主要考查线面关系、直线与平面所成角、二面角等有关知识,考查空间想象能力和推理论证能力.(满分12分)
(Ⅰ)证明:如右图,过点A在平面A1ABB1内作AD⊥A1B于D,则由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,
得AD⊥平面A1BC.又BC平面A1BC
所以AD⊥BC.
因为三棱柱ABC-A1B1C1是直三棱柱,
则AA1⊥底面ABC,所以AA1⊥BC.
又AA1∩AD=A,从而BC⊥侧面A1ABB1,
又AB侧面A1ABB1,
故AB⊥BC.
(Ⅱ)证法1:连接CD,则由(Ⅰ)知∠ACD就是直线AC与平面A1BC所成的角,∠ABA1就是二面角A1-BC-A的平面角,即∠ACD=θ,∠ABA1=j.
于是在RtΔADC中,sinθ=,在RtΔADA1中,sin∠AA1D=,
∴sinθ=sin∠AA1D,由于θ与∠AA1D都是锐角,所以θ=∠AA1D.
又由RtΔA1AB知,∠AA1D+j=∠AA1B+j=,故θ+j=.
证法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.
设AB=c(c<a=,则B(0,0,0),A(0,c,0),C(),
A1(0,c,a),于是,=(0,c,a),
,=(0,0,a)
设平面A1BC的一个法向量为n=(x,y,z),
则由
可取n=(0,-a,c),于是
n·=ac>0,与n的夹角b为锐角,则b与q互为余角.
sinq=cosb=,
cosj=
所以sinq=cosj=sin(),又0<q,j<,所以q+j=.
19.本小题主要考查根据实际问题建立数学模型,以及运用函数、不等式等知识解决实际问题的能力.(满分12分)
解法1:设矩形栏目的高为a cm,宽为b cm,则ab=9000. ①
广告的高为a+20,宽为2b+25,其中a>0,b>0.
广告的面积S=(a+20)(2b+25)
=2ab+40b+25a+500=18500+25a+40b
≥18500+2=18500+
当且仅当25a=40b时等号成立,此时b=,代入①式得a=120,从而b=75.
即当a=120,b=75时,S取得最小值24500.
故广告的高为140 cm,宽为175 cm时,可使广告的面积最小.
解法2:设广告的高和宽分别为x cm,y cm,则每栏的高和宽分别为x-20,其中x>20,y>25
两栏面积之和为2(x-20),由此得y=
广告的面积S=xy=x()=x,
整理得S=
因为x-20>0,所以S≥2
当且仅当时等号成立,
此时有(x-20)2=14400(x>20),解得x=140,代入y=+25,得y=175,
即当x=140,y=175时,S取得最小值24500,
故当广告的高为140 cm,宽为175 cm时,可使广告的面积最小.
20.本小题主要考查双曲线的定义、标准方程、直线和双曲线位置关系等平面解析几何的基础知识,考查待定系数法、不等式的解法以及综合运用数学知识进行推理运算的能力.
(满分13分)
(Ⅰ)解法1:依题意,由a2+b2=4,得双曲线方程为(0<a2<4),
将点(3,)代入上式,得.解得a2=18(舍去)或a2=2,
故所求双曲线方程为
解法2:依题意得,双曲线的半焦距c=2.
2a=|PF1|-|PF2|=
∴a2=2,b2=c2-a2=2.
∴双曲线C的方程为
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0. ①
∵直线I与双曲线C相交于不同的两点E、F,
∴
∴k∈(-)∪ (-1,1)∪(1,). ②
设E(x1,y1),F(x2,y2),则由①式得x1+x2=于是
|EF|=
=
而原点O到直线l的距离d=,
∴SΔOEF=
若SΔOEF=,即解得k=±,
满足②.故满足条件的直线l有两条,其方程分别为y=和
解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0. ①
∵直线l与双曲线C相交于不同的两点E、F,
∴
∴k∈(-)∪(-1,1)∪(1,). ②
设E(x1,y1),F(x2,y2),则由①式得
|x1-x2|=. ③
当E、F在同一支上时(如图1所示),
SΔOEF=|SΔOQF-SΔOQE|=;
当E、F在不同支上时(如图2所示),
SΔOEF=SΔOQF+SΔOQE=
综上得SΔOEF=,于是
由|OQ|=2及③式,得SΔOEF=.
若SΔOEF=2,即,解得k=±,满足②.
故满足条件的直线l有两条,其方程分别为y=和y=
21.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.(满分14分)
(Ⅰ)证明:假设存在一个实数l,使{an}是等比数列,则有,即
()2=2矛盾.
所以{an}不是等比数列.
(Ⅱ)证明:∵
=
又由上式知
故当数列{bn}是以为首项,为公比的等比数列.
(Ⅲ)当由(Ⅱ)得于是
当时,,从而上式仍成立.
要使对任意正整数n , 都有
即
令
当n为正奇数时,当n为正偶数时,
于是可得
综上所述,存在实数,使得对任意正整数,都有
的取值范围为