温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2011
年高
考真题
数学
山东
原卷版
2011年山东省高考数学试卷(理科)
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)(2011•山东)设集合 M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=( )
A.
[1,2)
B.
[1,2]
C.
(2,3]
D.
[2,3]
2.(3分)(2011•山东)复数z=(i是虚数单位)在复平面内对应的点位于象限为( )
A.
第一象限
B.
第二象限
C.
第三象限
D.
第四象限
3.(3分)(2011•山东)若点(a,9)在函数y=3x的图象上,则tan的值为( )
A.
0
B.
C.
1
D.
4.(3分)(2011•山东)不等式|x﹣5|+|x+3|≥10的解集是( )
A.
[﹣5,7]
B.
[﹣4,6]
C.
(﹣∞,﹣5]∪[7,+∞)
D.
(﹣∞,﹣4]∪[6,+∞)
5.(3分)(2011•山东)对于函数y=f(x),x∈R,“y=|f(x)|的图象关于y轴对称”是“y=f(x)是奇函数”的( )
A.
充分而不必要条件
B.
必要而不充分条件
C.
充要条件
D.
既不充分也不必要条件
6.(3分)(2011•山东)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=( )
A.
8
B.
2
C.
D.
7.(3分)(2011•山东)某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元)
4
2
3
5
销售额y(万元)
49
26
39
54
根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为( )
A.
63.6万元
B.
65.5万元
C.
67.7万元
D.
72.0万元
8.(3分)(2011•山东)已知双曲线=1(a>0,b>0)的两条渐近线均和圆C:x2+y2﹣6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )
A.
B.
=1
C.
=1
D.
=1
9.(3分)(2011•山东)函数的图象大致是( )
A.
B.
C.
D.
10.(3分)(2011•山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为( )
A.
6
B.
7
C.
8
D.
9
11.(3分)(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:
①存在三棱柱,其正(主)视图、俯视图如图;
②存在四棱柱,其正(主)视图、俯视图如图;
③存在圆柱,其正(主)视图、俯视图如图.
其中真命题的个数是 ( )
A.
3
B.
2
C.
1
D.
0
12.(3分)(2011•山东)设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,若(λ∈R),(μ∈R),且,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,O)(c,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( )
A.
C可能是线段AB的中点
B.
D可能是线段AB的中点
C.
C,D可能同时在线段AB上
D.
C,D不可能同时在线段AB的延长线上
二、填空题(共4小题,每小题3分,满分12分)
13.(3分)(2011•山东)执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是 .
14.(3分)(2011•山东)若(x﹣)6式的常数项为60,则常数a的值为 .
15.(3分)(2011•山东)设函数f(x)=(x>0),观察:
f1(x)=f(x)=,
f2(x)=f(f1(x))=,
f3(x)=f(f2(x))=,
f4(x)=f(f3(x))=,
…
根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn﹣1(x))= .
16.(3分)(2011•山东)已知函数f(x)=logax+x﹣b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x0∈(n,n+1),n∈N*,则n= .
三、解答题(共6小题,满分74分)
17.(12分)(2011•山东)在ABC中,内角A,B,C的对边分别为a,b,c,已知
(Ⅰ)求的值;
(Ⅱ)若,b=2,求△ABC的面积S.
18.(12分)(2011•山东)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.
(Ⅰ)求红队至少两名队员获胜的概率;
(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ.
19.(12分)(2011•山东)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.
(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;
(Ⅱ)若AC=BC=2AE,求二面角A﹣BF﹣C的大小.
20.(12分)(2011•山东)等比数列{an}中.a1,a2,a3分别是下表第一、二、三行中的某一个数.且a1,a2,a3中的任何两个数不在下表的同一列.
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)如数列{bn}满足bn=an+(﹣1)nlnan,求数列bn的前n项和sn.
21.(12分)(2011•山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.
(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的r.
22.(14分)(2011•山东)已知直线l与椭圆C:交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=,其中O为坐标原点.
(Ⅰ)证明x12+x22和y12+y22均为定值;
(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG=?若存在,判断△DEG的形状;若不存在,请说明理由.