分享
2022年高考数学真题(理科)(全国乙卷)(原卷版).docx
下载文档

ID:2830568

大小:272.10KB

页数:6页

格式:DOCX

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2022 年高 数学 理科 全国 原卷版
绝密★启用前 2022年普通高等学校招生全国统一考试 数学(理科) 注意事项: 1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1 设全集,集合M满足,则( ) A. B. C. D. 2. 已知,且,其中a,b为实数,则( ) A. B. C. D. 3. 已知向量满足,则( ) A B. C. 1 D. 2 4. 嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则( ) A. B. C. D. 5. 设F为抛物线的焦点,点A在C上,点,若,则( ) A. 2 B. C. 3 D. 6. 执行下边的程序框图,输出的( ) A 3 B. 4 C. 5 D. 6 7. 在正方体中,E,F分别为中点,则( ) A. 平面平面 B. 平面平面 C. 平面平面 D. 平面平面 8. 已知等比数列的前3项和为168,,则( ) A. 14 B. 12 C. 6 D. 3 9. 已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( ) A. B. C. D. 10. 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( ) A. p与该棋手和甲、乙、丙的比赛次序无关 B. 该棋手在第二盘与甲比赛,p最大 C. 该棋手在第二盘与乙比赛,p最大 D. 该棋手在第二盘与丙比赛,p最大 11. 双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C的两支交于M,N两点,且,则C的离心率为( ) A. B. C. D. 12. 已知函数的定义域均为R,且.若的图像关于直线对称,,则( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分. 13. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________. 14. 过四点中的三点的一个圆的方程为____________. 15. 记函数的最小正周期为T,若,为的零点,则的最小值为____________. 16. 已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________. 三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. 记的内角的对边分别为,已知. (1)证明:; (2)若,求的周长. 18. 如图,四面体中,,E为的中点. (1)证明:平面平面; (2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值. 19. 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据: 样本号i 1 2 3 4 5 6 7 8 9 10 总和 根部横截面积 0.04 0.06 0.04 0.08 0.08 0.05 005 0.07 0.07 0.06 0.6 材积量 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9 并计算得. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数. 20. 已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点. (1)求E的方程; (2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点. 21. 已知函数 (1)当时,求曲线在点处的切线方程; (2)若在区间各恰有一个零点,求a的取值范围. (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程] 22. 在直角坐标系中,曲线C的参数方程为,(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为. (1)写出l的直角坐标方程; (2)若l与C有公共点,求m的取值范围. [选修4-5:不等式选讲] 23. 已知a,b,c都是正数,且,证明: (1); (2);

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开