分享
2010年高考数学真题(理科)(安徽自主命题).doc
下载文档

ID:2830510

大小:1.79MB

页数:14页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2010 年高 数学 理科 安徽 自主 命题
2010年安徽高考理科数学真题及答案 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试用时120分钟. 注意事项: 1.答卷前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位. 2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 3.答第Ⅱ卷时,必须使用0.5毫米黑色黑水签字笔在答题卡上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色签际笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效. 4.考试结束,务必将试题卷和答题卡一并上交. 参考公式: 如果事件A与B互斥,那么 如果A与B是两个任意事件,,那么 如果事件A与B相互独立,那么 第Ⅰ卷(选择题 共50分) 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)是虚数单位, (A) (B) (C) (D) (2)若集合,则 (A) (B) (C) (D) (3)设向量,则下列结论中正确的是 (A) (B) (C)垂直 (D) (4)若是R上周期为5的奇函数,且满足则= (A)-1 (B)1 (C)-2 (D)2 (5)双曲线方程为,则它的右焦点坐标为 (A) (B) (C) (D) (6)设,二次函数的图象可能是 (7)设曲线C的参数方程为(为参数), 直线的方程为,则曲线C到直线的距 离为的点的个数为 (A)1 (B)2 (C)3 (D)4 (8)一个几何全体的三视图如图,该几何体的表面积为 (A)280 (B)292 (C)360 (D)372 (9)动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知定时t=0时,点A的坐标是,则当时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是 (A)[0,1] (B)[1,7] (C)[7,12] (D)[0,1]和[7,12]、 (10)设是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是 (A) (B) (C) (D) (在此卷上答题无效) 绝密★启用并使用完毕前 2010年普通高等学校招生全国统一考试(安徽卷) 数 学(理科) 第Ⅱ卷(非选择题 共100分) 考生注意事项: 请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效. 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)命题“对任何”的否定是 . (12)的展开式中,的系数等于 . (13)设满足约束条件若目标函数的最大值为8,则的最小值为 . (14)如图所示,程序框图(算法流程图)的输出值 . (15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红 球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐, 分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球 的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球 是红球的事件,则下列结论中正确的是  (写出所有正确结 论的编号). ①; ②; ③事件B与事件A1相互独立; ④A1,A2,A3是两两互斥的事件; ⑤的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内. (16)(本小题满分12分) 设是锐角三角形,分别是内角A,B,C所对边长,并且 (Ⅰ)求角A的值; (Ⅱ)若,求(其中). (17)(本小题满分12分) 设a为实数,函数 (I)求的单调区间与极值; (II)求证:当时, (18)(本小题满分13分) 如图,在多面体ABCDEF中,四边形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF, BF=FC,H为BC的中点. (I)求证:FH//平面EDB; (II)求证:AC⊥平面EDB; (III)求二面角B—DE—C的大小. (19)(本小题满分13分) 已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 (I)求椭圆E的方程; (II)求的角平分线所在直线的方程; (III)在椭圆E上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由. (20)(本小题满分12分) 设数列中的每一项都不为0. 证明,为等差数列的充分必要条件是:对任何,都有 (21)(本小题满分13分) 品酒师需要定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序,经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分. 现设n=4,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令 则X是对两次排序的偏离程度的一种描述. (I)写出X的可能值集合; (II)假设等可能地为1,2,3,4的各种排列,求X的分布列; (III)某品酒师在相继进行的三轮测试中,都有, (i)试按(II)中的结果,计算出现这种现象的概率(假定各轮测试相互独立); (ii)你认为该品酒师的酒味鉴别功能如何?说明理由. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)B (2)A (3)C (4)A (5)C (6)D (7)B (8)C (9)D (10)D 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)存在 (12)15(若只写,也可) (13)4 (14)12 (15)②④ 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内. (16)(本小题满分12分) 本题考查两角和的正弦公式,同角三角函数的基本关系,特殊角的三角函数值,向量的数量积,利用余弦定理解三角形等有关知识,考查综合运算求解能力. 解:(I)因为 (II)由可得 ① 由(I)知所以 ② 由余弦定理知及①代入,得 ③+②×2,得,所以 因此,c,b是一元二次方程的两个根. 解此方程并由 (17)(本小题满分12分) 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力. (I)解:由 令的变化情况如下表: — 0 + 单调递减 单调递增 故的单调递减区间是,单调递增区间是, 处取得极小值, 极小值为 (II)证:设 于是 由(I)知当 于是当 而 即 (18)(本小题满分13分) 本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力. [综合法](1)证:设AC与BD交于点G,则G为AC的中点,连EG,GH, 又H为BC的中点, ∴四边形EFHG为平行四边形, ∴EG//FH,而EG平面EDB,∴FH//平面EDB. (II)证:由四边形ABCD为正方形,有AB⊥BC,又EF//AB, ∴EF⊥BC. 而EF⊥FB,∵EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH. 又BF=FC,H为BC的中点,∴FH⊥BC. ∴FH⊥平面ABCD,∴FH⊥AC, 又FH//BC,∴AC=EG. 又AC⊥BD,EGBD=G,∴AG⊥平面EDB. (III)解:EF⊥FB,∠BFC=90°,∴BF⊥平面CDEF, 在平面CDEF内过点F作FK⊥DE交DE的延长线于K, 则∠FKB为二面角B—DE—C的一个平面角. 设EF=1,则AB=2,FC=,DE= 又EF//DC,∴∠KEF=∠EDC,∴sin∠EDC=sin∠KEF= ∴FK=EFsin∠KEF=,tan∠FKB=∴∠FKB=60° ∴二面角B—DE—C为60°. [向量法] ∵四边形ABCD为正方形,∴AB⊥BC,又EF//AB,∴EF⊥BC. 又EF⊥FB,∴EF⊥平面BFC. ∴EF⊥FH,∴AB⊥FH. 又BF=FC,H为BC的中点,∴FH⊥BC,∴FH⊥平面ABC. 以H为坐标原点,轴正向,轴正向, 建立如图所示坐标系. 设BH=1,则A(1,—2,0),B(1,0,0), C(—1,0,0),D(—1,—2,0),E(0,—1,1), F(0,0,1). (I)证:设AC与BD的交点为G,连GE,GH, 则 平面EDB,HF不在平面EDB内,∴FH∥平面EBD, (II)证: 又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB. (III)解: 设平面BDE的法向量为 则 即二面角B—DE—C为60°. (19)(本小题满分13分) 本题考查椭圆的定义及标准方程,椭圆的简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式,点关于直线的对称等基础知识;考查解析几何的基本思想、综合运算能力、探究意识与创新意识. 解:(I)设椭圆E的方程为 将A(2,3)代入上式,得 ∴椭圆E的方程为 (II)解法1:由(I)知,所以 直线AF1的方程为: 直线AF2的方程为: 由点A在椭圆E上的位置知,直线l的斜率为正数. 设上任一点,则 若(因其斜率为负,舍去). 所以直线l的方程为: 解法2: (III)解法1: 假设存在这样的两个不同的点 由于M在l上,故 ① 又B,C在椭圆上,所以有 两式相减,得 即 将该式写为, 并将直线BC的斜率和线段BC的中点,表示代入该表达式中, 得 ② ①×2—②得,即BC的中点为点A,而这是不可能的. ∴不存在满足题设条件的点B和C. 解法2: 假设存在, 则 得一元二次方程 则是该方程的两个根, 由韦达定理得 于是 ∴B,C的中点坐标为 又线段BC的中点在直线 即B,C的中点坐标为(2,3),与点A重合,矛盾. ∴不存在满足题设条件的相异两点. (20)(本小题满分12分) 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力. 证:先证必要性 设数列则所述等式显然成立, 若,则 再证充分性. 证法1:(数学归纳法)设所述的等式对一切都成立,首先,在等式 ① 两端同乘成等差数列, 记公差为 假设时,观察如下二等式 ② , ③ 将②代入③,得 在该式两端同乘 将 由数学归纳法原理知,对一切 所以的等差数列. 证法2:[直接证法]依题意有 ① ② ②—①得 , 在上式两端同乘 同理可得 ③ ③—④得 即是等差数列, (21)(本小题满分13分) 本题考查离散型随机变量及其分布列,考查在复杂场合下进行计数的能力,能过设置密切贴近生产、生活实际的问题情境,考查概率思想在现实生活中的应用,考查抽象概括能力、应用与创新意识. 解:(I)X的可能值集合为{0,2,4,6,8}. 在1,2,3,4中奇数与偶数各有两个,所以中的奇数个数等于中的偶数个数,因此的奇偶性相同, 从而必为偶数. X的值非负,且易知其值不大于8. 容易举出使得X的值等于0,2,4,6,8各值的排列的例子. (II)可用列表或树状图列出1,2,3,4的一共24种排列,计算每种排列下的X值,在等可能的假定下,得到 X 0 2 4 6 8 P (III)(i)首先,将三轮测试都有的概率记做p,由上述结果和独立性假设,得 (ii)由于是一个很小的概率,这表明如果仅凭随机猜测得到三轮测试都有的结果的可能性很小,所以我们认为该品酒师确实有良好的味觉鉴别功能,不是靠随机猜测.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开