2009
年高
数学
理科
四川
自主
命题
2009年普通高等学校招生全国统一考试(四川卷)
理科数学
第Ⅰ卷
本试卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果事件互斥,那么 球的表面积公式
其中表示球的半径
如果事件相互独立,那么 球的体积公式
其中表示球的半径
一、选择题:
1. 设集合则
A. B. C. D.
2.已知函数连续,则常数的值是
A.2 B.3 C.4 D.5
3.复数的值是
A.-1 B.1 C.- D.
4.已知函数,下面结论错误的是
A.函数的最小正周期为 B.函数在区间上是增函数
C.函数的图像关于直线对称 D.函数是奇函数
5.如图,已知六棱锥的底面是正六边形,,则下列结论正确的是
A. B.平面
C. 直线∥平面 D.
6.已知为实数,且。则“”是“”的
A. 充分而不必要条件 B. 必要而不充分条件
C.充要条件 D. 既不充分也不必要条件
7.已知双曲线的左右焦点分别为,其一条渐近线方程为,点在该双曲线上,则=
A. B. C .0 D. 4
8.如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是
A. B. C. D.
9.已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是
A.2 B.3 C. D.
10.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是
A. 12万元 B. 20万元 C. 25万元 D. 27万元
11.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是
A. 360 B. 228 C. 216 D. 96
12.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是
A.0 B. C.1 D.
第Ⅱ卷
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.
13.的展开式的常数项是 (用数字作答)
14.若⊙与⊙相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是
15.如图,已知正三棱柱的各条棱长都相等,是侧 棱的中点,则异面直线所成的角的大小是 。
16.设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:
①设是平面上的线性变换,则
②对,则是平面上的线性变换;
③若是平面上的单位向量,对,则是平面上的线性变换;
④设是平面上的线性变换,,若共线,则也共线。
其中真命题是 (写出所有真命题的序号)
三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.
17. (本小题满分12分)
在中,为锐角,角所对应的边分别为,且
(I)求的值;
(II)若,求的值。
18. (本小题满分12分)
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。
(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(II)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望。
19(本小题满分12分)
如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(I)求证:;
(II)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(III)求二面角的大小。
20(本小题满分12分)
已知椭圆的左右焦点分别为,离心率,右准线方程为。
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于两点,且,求直线的方程。
21. (本小题满分12分)
已知函数。
(I)求函数的定义域,并判断的单调性;
(II)若
(III)当(为自然对数的底数)时,设,若函数的极值存在,求实数的取值范围以及函数的极值。
22. (本小题满分14分)
设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列的通项公式;
(II)记,设数列的前项和为,求证:对任意正整数都有;
(III)设数列的前项和为。已知正实数满足:对任意正整数恒成立,求的最小值。
2009年普通高等学校招生全国统一考试(四川卷)
理科数学参考答案
(1) C (2) B (3) A (4) D (5) D (6) B
(7) C (8) B (9) A (10)D (11) B (12) A
(13) -20 (14)4 (15) (16)①②③
1.设集合则
A. B. C. D.
【考点定位】本小题考查解含有绝对值的不等式、一元二次不等式,考查集合的运算,基础题。
解析:由题,故选择C。
2.已知函数连续,则常数的值是
A.2 B.3 C.4 D.5
【考点定位】本小题考查函数的连续性,考查分段函数,基础题。
解析:由题得,故选择B。
3.复数的值是
A.-1 B.1 C.- D.
【考点定位】本小题考查复数的运算,基础题。
解析:,故选择A。
4.已知函数,下面结论错误的是
A.函数的最小正周期为 B.函数在区间上是增函数
C.函数的图像关于直线对称 D.函数是奇函数
【考点定位】本小题考查诱导公式、三角函数的奇偶性、周期、单调性等,基础题。(同文4)
解:,其中A、C显然正确,故选择D。
5.如图,已知六棱锥的底面是正六边形,,则下列结论正确的是
A. B.平面
、C. 直线∥平面
D.
【考点定位】本小题考查空间里的线线、线面关系,基础题。(同文6)
解:由三垂线定理,因AD与AB不相互垂直,排除A;作于,
因面面ABCDEF,而AG在面ABCDEF上的射影在AB上,而AB与BC不相互垂直,故排除B;由,而EF是平面PAE的斜线,故排除C,故选择D。
6.已知为实数,且。则“”是“”的
A. 充分而不必要条件 B. 必要而不充分条件
C.充要条件 D. 既不充分也不必要条件
【考点定位】本小题考查不等式的性质、简单逻辑,基础题。(同文7)
解析:推不出;但,故选择B。
7.已知双曲线的左右焦点分别为,其一条渐近线方程为,点在该双曲线上,则=
A. B. C .0 D. 4
【考点定位】本小题考查双曲线的渐近线方程、双曲线的定义,基础题。(同文8)
解析:由题知,故,
∴,故选择C。
8.如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是
A. B. C. D.
【考点定位】本小题考查球的截面圆性质、球面距,基础题。(同文9)
解析:由知截面圆的半径
,故,所以两点的球面距离为,故选择B。
9.已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是
A.2 B.3 C. D.
【考点定位】本小题考查抛物线的定义、点到直线的距离,综合题。
解析:直线为抛物线的准线,由抛物线的定义知,P到的距离等于P到抛物线的焦点的距离,故本题化为在抛物线上找一个点使得到点和直线的距离之和最小,最小值为到直线的距离,即,故选择A。
10.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是
A. 12万元 B. 20万元 C. 25万元 D. 27万元
【考点定位】本小题考查简单的线性规划,基础题。(同文10)
解析:设甲、乙种两种产品各需生产、吨,可使利润最大,故本题即
已知约束条件,求目标函数的最大值,可求出最优解为,故,故选择D。
11.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是
A. 360 B. 228 C. 216 D. 96
【考点定位】本小题考查排列综合问题,基础题。
解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有种,其中男生甲站两端的有,符合条件的排法故共有
12.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是
A.0 B. C.1 D.
【考点定位】本小题考查求抽象函数的函数值之赋值法,综合题。(同文12)
解析:令,则;令,则
由得,所以
,故选择A。
13.的展开式的常数项是 (用数字作答)
【考点定位】本小题考查二项式展开式的特殊项,基础题。(同文13)
解析:由题知的通项为,令得,故常数项为。
14.若⊙与⊙相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是 w
【考点定位】本小题考查圆的标准方程、两直线的位置关系等知识,综合题。
解析:由题知,且,又,所以有,∴。
15.如图,已知正三棱柱的各条棱长都相等,是侧 棱的中点,则异面直线所成的角的大小是 。
【考点定位】本小题考查异面直线的夹角,基础题。
解析:不妨设棱长为2,选择基向量,则
,故填写。
法2:取BC中点N,连结,则面,∴是在面上的射影,由几何知识知,由三垂线定理得,故填写。
16.设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:
①设是平面上的线性变换,则
②对设,则是平面上的线性变换;
③若是平面上的单位向量,对设,则是平面上的线性变换;
④设是平面上的线性变换,,若共线,则也共线。
其中真命题是 (写出所有真命题的序号)
【考点定位】本小题考查新定义,创新题。
解析:令,由题有,故①正确;
由题,,即
,故②正确;
由题,,即
,故③不正确;
由题,,即也共线,故④正确;
三、解答题
(17)本小题主要考查同角三角函数间的关系,两角和差的三角函数、二倍角公式、正弦定理等基础知识及基本运算能力。
解:(Ⅰ)、为锐角,,
又,
,,
…………………………………………6分
(Ⅱ)由(Ⅰ)知,.
由正弦定理得
,即,
,
,
……………………………………12分
(18)本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。
解:(Ⅰ)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。设事件为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,
事件为“采访该团3人中,1人持金卡,0人持银卡”,
事件为“采访该团3人中,1人持金卡,1人持银卡”。
所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是。
…………………………………………………………6分
(Ⅱ)的可能取值为0,1,2,3
,
,,
所以的分布列为
0
1
2
3
所以, ……………………12分
(19)本小题主要考察平面与平面垂直、直线与平面垂直、直线与平面平行、二面角
等基础知识,考察空间想象能力、逻辑推理能力和数学探究意识,考察应用向量知识解决数学问题的能力。
解法一:
(Ⅰ)因为平面⊥平面,平面,
平面平面,
所以⊥平面
所以⊥.
因为为等腰直角三角形, ,
所以
又因为,
所以,
即⊥,
所以⊥平面。 ……………………………………4分
(Ⅱ)存在点,当为线段AE的中点时,PM∥平面
取BE的中点N,连接AN,MN,则MN∥=∥=PC
所以PMNC为平行四边形,所以PM∥CN
因为CN在平面BCE内,PM不在平面BCE内,
所以PM∥平面BCE ……………………………………8分
(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD
作FG⊥AB,交BA的延长线于G,则FG∥EA。从而,FG⊥平面ABCD
作GH⊥BD于G,连结FH,则由三垂线定理知,BD⊥FH
因此,∠AEF为二面角F-BD-A的平面角
因为FA=FE, ∠AEF=45°,
所以∠AFE=90°,∠FAG=45°.
设AB=1,则AE=1,AF=.
FG=AF·sinFAG=
在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+=,
GH=BG·sinGBH=·=
在Rt△FGH中,tanFHG= =
故二面角F-BD-A的大小为arctan. ………………………………12分
解法二:
(Ⅰ)因为△ABE为等腰直角三角形,AB=AE,
所以AE⊥AB.
又因为平面ABEF⊥平面ABCD,AE平面ABEF,
平面ABEF∩平面ABCD=AB,
所以AE⊥平面ABCD.
所以AE⊥AD.
因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.
设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) ,
E ( 0, 0, 1 ), C ( 1, 1, 0 ).
因为FA=FE, ∠AEF = 45°,
所以∠AFE= 90°.
从而,.
所以,,.
,.
所以EF⊥BE, EF⊥BC.
因为BE平面BCE,BC∩BE=B ,
所以EF⊥平面BCE.
(Ⅱ)存在点M,当M为AE中点时,PM∥平面BCE.
M ( 0,0, ), P ( 1, ,0 ).
从而=,
于是·=·=0
所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内,
故PMM∥平面BCE. ………………………………8分
(Ⅲ)设平面BDF的一个法向量为,并设=(x,y,z).
,
即
取y=1,则x=1,z=3。从而。
取平面ABD的一个法向量为。
。
故二面角F—BD—A的大小为arccos。……………………………………12分
(20)本小题主要考查直线、椭圆、平面向量等基础知识,以及综合运用数学知识解决问题及推理运算能力。
解:(Ⅰ)有条件有,解得。
。
所以,所求椭圆的方程为。…………………………………4分
(Ⅱ)由(Ⅰ)知、。
若直线l的斜率不存在,则直线l的方程为x=-1.
将x=-1代入椭圆方程得。
不妨设、,
.
,与题设矛盾。
直线l的斜率存在。
设直线l的斜率为k,则直线的方程为y=k(x+1)。
设、,
联立,消y得。
由根与系数的关系知,从而,
又,,
。
。
化简得,解得
(21)本小题主要考查函数、数列的极限、导数应用等基础知识、考查分类整合思想、推理和运算能力。
解:(Ⅰ)由题意知
当
当
当….(4分)
(Ⅱ)因为
由函数定义域知>0,因为n是正整数,故0<a<1.
所以
(Ⅲ)
令
① 当m=0时,有实根,在点左右两侧均有故无极值
② 当时,有两个实根
当x变化时,、的变化情况如下表所示:
+
0
-
0
+
↗
极大值
↘
极小值
↗
的极大值为,的极小值为
③ 当时,在定义域内有一个实根,
同上可得的极大值为
综上所述,时,函数有极值;
当时的极大值为,的极小值为
当时,的极大值为
(22)本小题主要考查数列、不等式等基础知识、考查化归思想、分类整合思想,以及推理论证、分析与解决问题的能力。
解:(Ⅰ)当时,
又
数列成等比数列,其首项,公比是
……………………………………..3分
(Ⅱ)由(Ⅰ)知
=
又
当
当
.
(Ⅲ)由(Ⅰ)知
一方面,已知恒成立,取n为大于1的奇数时,设
则
>
对一切大于1的奇数n恒成立
只对满足的正奇数n成立,矛盾。
另一方面,当时,对一切的正整数n都有
事实上,对任意的正整数k,
当n为偶数时,设
则
<
当n为奇数时,设
则
<
对一切的正整数n,都有
综上所述,正实数的最小值为4………………………….14分