分享
2016年上海高考文数真题及答案.doc
下载文档

ID:2830239

大小:389.50KB

页数:8页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2016 上海 高考 文数真题 答案
2016上海高考文科数学真题及答案 考生注意: 1.本试卷共4页,23道试题,满分150分.考试时间120分钟. 2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分. 3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名. 一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设,则不等式的解集为_______. 2.设,其中为虚数单位,则的虚部等于______. 3.已知平行直线,,则与的距离是_____. 4.某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是______(米). 5.若函数的最大值为5,则常数______. 6.已知点(3,9)在函数的图像上,则的反函数=______. 7.若满足 则的最大值为_______. 8.方程在区间上的解为_____. 9.在的二项展开式中,所有项的二项式系数之和为256,则常数项等于____. 10.已知△ABC的三边长分别为3,5,7,则该三角形的外接圆半径等于____. 11.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______. 12.如图,已知点O(0,0),A(1.0),B(0,−1),P是曲线上一个动点,则的取值范围是 . 13.设a>0,b>0. 若关于x,y的方程组无解,则的取值范围是 . 14.无穷数列{an}由k个不同的数组成,Sn为{an}的前n项和.若对任意的,则k的最大值为 . 二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.设,则“a>1”是“a2>1”的( ) (A)充分非必要条件 (B)必要非充分条件 (C)充要条件 (D)既非充分也非必要条件 16.如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( ) (A)直线AA1 (B)直线A1B1 (C)直线A1D1 (D)直线B1C1 17.设,.若对任意实数x都有,则满足条件的有序实数对(a,b)的对数为( ) (A)1 (B)2 (C)3 (D)4 18.设f(x)、g(x)、h(x)是定义域为的三个函数.对于命题:①若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是以T为周期的函数,则f(x)、g(x)、h(x) 均是以T为周期的函数,下列判断正确的是( ) (A)①和②均为真命题 (B) ①和②均为假命题 (C)①为真命题,②为假命题 (D)①为假命题,②为真命题 三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. 将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图, 长为 ,长为,其中B1与C在平面AA1O1O的同侧. (1)求圆柱的体积与侧面积; (2)求异面直线O1B1与OC所成的角的大小. 20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等.现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图 (1)求菜地内的分界线C的方程; (2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的“经验值”为 .设M是C上纵坐标为1的点,请计算以EH为一边、另有一边过点M的矩形的面积,及五边形EOMGH的面积,并判别哪一个更接近于S1面积的“经验值”. 21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 双曲线的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点. (1)若l的倾斜角为 ,是等边三角形,求双曲线的渐近线方程; (2)设 若l的斜率存在,且|AB|=4,求l的斜率. 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 对于无穷数列{}与{},记A={|=,},B={|=,},若同时满足条件:①{},{}均单调递增;②且,则称{}与{}是无穷互补数列. (1)若=,=,判断{}与{}是否为无穷互补数列,并说明理由; (2)若=且{}与{}是无穷互补数列,求数列{}的前16项的和; (3)若{}与{}是无穷互补数列,{}为等差数列且=36,求{}与{}得通项公式. 23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分 已知R,函数=. (1)当 时,解不等式>1; (2)若关于的方程+=0的解集中恰有一个元素,求的值; (3)设>0,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.A 16.D 17.B 18.D 19.解:(1)由题意可知,圆柱的母线长,底面半径. 圆柱的体积, 圆柱的侧面积. (2)设过点的母线与下底面交于点,则, 所以或其补角为与所成的角. 由长为,可知, 由长为,可知,, 所以异面直线与所成的角的大小为. 20.解:(1)因为上的点到直线与到点的距离相等,所以是以为焦点、以 为准线的抛物线在正方形内的部分,其方程为(). (2)依题意,点的坐标为. 所求的矩形面积为,而所求的五边形面积为. 矩形面积与“经验值”之差的绝对值为,而五边形面积与“经验值”之差 的绝对值为,所以五边形面积更接近于面积的“经验值”. 21.解:(1)设. 由题意,,,, 因为是等边三角形,所以, 即,解得. 故双曲线的渐近线方程为. (2)由已知,. 设,,直线. 由,得. 因为与双曲线交于两点,所以,且. 由,,得, 故, 解得,故的斜率为. 22.解:(1)因为,,所以, 从而与不是无穷互补数列. (2)因为,所以. 数列的前项的和为 . (3)设的公差为,,则. 由,得或. 若,则,,与“与是无穷互补数列”矛盾; 若,则,,. 综上,,. 23.解:(1)由,得, 解得. (2)有且仅有一解, 等价于有且仅有一解,等价于有且仅有一解. 当时,,符合题意; 当时,,. 综上,或. (3)当时,,, 所以在上单调递减. 函数在区间上的最大值与最小值分别为,. 即,对任意 成立. 因为,所以函数在区间上单调递增,时, 有最小值,由,得. 故的取值范围为.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开