分享
2006年福建高考理科数学真题及答案.doc
下载文档

ID:2830052

大小:256KB

页数:10页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2006 福建 高考 理科 数学 答案
2006年福建高考理科数学真题及答案 第Ⅰ卷(选择题 共60分) 一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设a、b、c、d∈R,则复数(a+bi)(c+di)为实数的充要条件是 A.ad-bc=0 B.ac-bd=0 C. ac+bd=0 D.ad+bc=0 (2)在等差数列{a}中,已知a=2,a+a=13,则a+a+a等于 A.40 B.42 C.43 D.45 (3)已知∈(,),sin=,则tan()等于 A. B.7 C.- D.-7 (4)已知全集U=R,且A={x︱︱x-1︱>2},B={x︱x-6x+8<0},则(A)∩等于 A.[-1,4] B. (2,3) C. (2,3) D.(-1,4) (5)已知正方体外接球的体积是,那么正方体的棱长等于 A.2 B. C. D. (6)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于 A. B. C. D. (7)对于平面和共面的直线m、n,下列命题中真命题是 A.若m⊥,m⊥n,则n∥ B.若m∥,n∥,则m∥n C.若m,n∥,则m∥n D.若m、n与所成的角相等,则n∥m (8)函数y=㏒(x﹥1)的反函数是 A.y= (x>0) B.y= (x<0) C.y= (x>0) D. .y= (x<0) (9)已知函数f(x)=2sinx(>0)在区间[,]上的最小值是-2,则的最小值等于 A. B. C.2 D.3 (10)已知双曲线(a>0,b<0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 A.( 1,2) B. (1,2) C.[2,+∞] D.(2,+∞) (11)已知︱︱=1,︱︱=,=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于 A. B.3 C. D. (12)对于直角坐标平面内的任意两点A(x,y)、B(x,y),定义它们之间的一种“距离”:‖AB‖=︱x-x︱+︱y-y︱. 给出下列三个命题: ①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖; ②在△ABC中,若∠C=90°,则‖AC‖+‖CB‖=‖AB‖; ③在△ABC中,‖AC‖+‖CB‖>‖AB‖. 其中真命题的个数为 A.0 B.1 C.2 D.3 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x-)展开式中x的系数是 (用数字作答) (14)已知直线x-y-1=0与抛物线y=ax相切,则a= (15)一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是 (16)如图,连结△ABC的各边中点得到一个新的△A1B1C1,又连结的△A1B1C1各边中点得到,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,这一系列三角形趋向于一个点M,已知A(0,0) ,B(3,0),C(2,2),则点M的坐标是 . 二、 解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分12分) 已知函数f(x)=sin2x+xcosx+2cos2x,xR. (I)求函数f(x)的最小正周期和单调增区间; (Ⅱ)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到? (18)(本小题满分12分) 如图,四面体ABCD中,O、E分别BD、BC的中点,CA=CB=CD=BD=2 (Ⅰ)求证:AO⊥平面BCD; (Ⅱ)求异面直线AB与CD所成角的大小; (Ⅲ)求点E到平面的距离. (19)(本小题满分12分) 统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=(0<x≤120).已知甲、乙两地相距100千米。 (Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? (20)(本小题满分12分) 已知椭圆的左焦点为F,O为坐标原点。 (Ⅰ)求过点O、F,并且与椭圆的左准线l相切的圆的方程; (Ⅱ)设过点F且不与坐标轴垂直交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围. (21)(本小题满分12分) 已知函数f(x)=-x+8x,g(x)=6lnx+m (Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t); (Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。 (22)(本小题满分14分) 已知数列{a}满足a=1,a=2a+1(n∈N) (Ⅰ)求数列{a}的通项公式; (Ⅱ)若数列{bn}满足4k1-14k2-1…4k-1=(an+1)km(n∈N*),证明:{bn}是等差数列; (Ⅲ)证明:(n∈N*). 2006年福建高考理科数学真题参考答案 一、选择题:本大题考查基本概念和基本运算,每小题5分,满分60分. (1)D (2)B (3)A (4)C (5)D (6)A (7)C (8)A (9)B (10)C (11)B (12)B 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. (13)10 (14)     (15) (16)() 三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)本小题主要考查三角函数的基本公式,三角恒等变换、三角函数的图象和性质等基本识,以及推理和运算能力,满分12分. 解:(1)f(x)= = =sin(2x+. ∴f(x)的最小正周期T==π. 由题意得2kπ-≤2x+,k∈Z, ∴f(x)的单调增区间为[kπ-],k∈Z. (2)方法一: 先把y=sin 2x图象上所有的点向左平移个单位长度,得到y=sin(2x+)的图象,再把所得图象上所有的点向上平移个单位年度,就得到y=sin(2x+)+的图象. 方法二: 把y=sin 2x图象上所有的点按向量a=(-)平移,就得到y=sin(2x+)+的图象. (18)本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分. 方法一: (1)证明:连结OC. ∵BO=DO,AB=AD, ∴AO⊥BD. ∵BO=DO,BC=CD, ∴CO⊥BD. 在△AOC中,由已知可得AO=1,CO=. 而AC=2, ∴AO2+CO2=AC2, ∴∠AOC=90°,即AO⊥OC. ∴AB平面BCD. (Ⅱ)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知ME∥AB,OE∥DC. ∴直线OE与EM所成的锐角就是异面直线AB与CD所成的角. 在△OME中, 是直角△AOC斜边AC上的中线,∴ ∴ ∴异面直线AB与CD所成角的大小为 (Ⅲ)解:设点E到平面ACD的距离为h. , ∴·S△ACD =·AO·S△CDE. 在△ACD中,CA=CD=2,AD=, ∴S△ACD= 而AO=1, S△CDE= ∴h= ∴点E到平面ACD的距离为. 方法二: (Ⅰ)同方法一: (Ⅱ)解:以O为原点,如图建立空间直角坐标系,则B(1,0,0),D(-1,0,0), C(0,,0),A(0,0,1),E(,,0), ∴ ∴异面直线AB与CD所成角的大小为 (Ⅲ)解:设平面ACD的法向量为n=(x,y,z),则 ∴ 令y=1,得n=(-)是平面ACD的一个法向量. 又 ∴点E到平面ACD的距离 h= (19)本小题主要考查函数,导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.满分12分. 解: (1)当x=40时,汽车从甲地到乙地行驶了小时, 要耗油(. 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升. (2)当速度为x千米/小时,汽车从甲地到乙地行驶了设耗油量为h(x)升,衣题意得 h(x)=()·, h’(x)=(0<x≤120= 令h’(x)=0,得x=80. 当x∈(0,80)时,h’(x)<0,h(x)是减函数; 当x∈(80,120)时,h’(x)>0,h(x)是增函数. ∴当x=80时,h(x)取到极小值h(80)=11.25. 因为h(x)在(0,120)上只有一个极值,所以它是最小值. 答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. (20)本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法, 考查运算能力和综合能力.满分12分. 解(1) ∵a2=2,b2=1,∴c=1,F(-1,0),l:x=-2. ∵圆过点O、F. ∴圆心M在直线x=- 设M(-),则圆半径 r=|(-)-(-2)|=. 由|OM|=r,得 解得t=±, ∴所求圆的方程为(x+)2+(y±) 2=. (2)设直线AB的方程为y=k(x+1)(k≠0), 代入+y2=1,整理得(1+2k2)x2+4k2x+2k2-2=0. ∵直线AB过椭圆的左焦点F, ∴方程有两个不等实根. 记A(x1,y1),B(x2,y2),AB中点N(x0,y0), 则x1+x1=- x0= AB垂直平分线NG的方程为 令y=0,得 ∵ ∴点G横坐标的取值范围为()。 (21)本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力。满分12分。 解:(I)f(x)=-x2+8x=-(x-4)2+16, 当t+1<4,即t<3时,f(x)在[t,t+1]上单调递增, h(t)=f(t+1)=-(t+1)2+8(t+1)=-t2+6t+7; 当t≤4≤t+1时,即3≤t≤4时,h(t)=f(4)=16; 当t>4时,f(x)在[t,t+1]上单调递减, h(t)=f(x)=-t2+8t . t<3, 3≤t≤4, t>4 综上,h(t)= (II)函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点,即函数 j(x)=g(x)-f(x)的图象与x轴的正半轴有且只有三个不同的交点。 ∴j(x)=x2-8x+16ln x+m, ∵j′(x)=2x-8+ 当x∈(0,1)时,j′(x)>0,j(x)是增函数; 当x∈(1,3)时,j′(x)<0,j(x)是减函数; 当x∈(3,+∞)时,j′(x)>0,j(x)是增函数; 当x=1,或x=3时, j′(x)=0; ∴j(x)极大值=j(1)=m-7, j(x)极小值=j(3)=m+6ln 3-15. ∵当x充分接近0时,j(x)<0,当x充分大时,j(x)>0. ∴要使j(x)的图象与x轴正半轴有三个不同的交点,必须且只须 既7<m<-6ln 3. 所以存在实数m,使得函数y=f(x)与y=g(x)的图象有且只有三个不同的交点,m的取值范围为(7,15—6ln 3). (22)本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。满分14分。 (I)解:∵an+1=2 an+1(n∈N), ∴an+1+1=2(an+1), ∴| an+1| 是以a1+1=2为首项,2为公比的等比数列。 ∴an+1=2n, 既an=2n-1(n∈N)。 (II)证法一:∵4b1-14 b2-2…4 bn-1=(a+1)bn, ∵4k1+k2+…+kn =2nk, ∴2[(b1+b2+…+bn)-n]=nb, ① 2[(b1+b2+…+bn+1)-(n+1)]=(n+1)bn+1 ② ②-①,得2(bn+1-1)=(n+1)bn+1-nb, 即 (n-1)bn+1-nbn+2=0. ③ nbn+2=(n+1)bn+1+2=0. ④ ④-③,得nbn+2-2nbn+1-nbn=0, 即 bn+2-2bn+1+b=0, ∴bn-2-bn+1=bn(n∈N*), ∴{bn}是等差数列. 证法二:同证法一,得 (n-1)bn+1=nbn+2=0 令n=1,得b1=2. 设b2=2+d(d∈R),,下面用数学归纳法证明 bn=2+(n-1)d. (1)当n=1,得b1=2. (2)假设当n=k(k≥2)时,b1=2+(k-1)d,那么 bk+1= 这就是说,当n=k+1时,等式也成立. 根据(1)和(2),可知bn=2(n-1)d对任何n∈N*都成立. ∵bn+1-bn=d, ∴{bn}是等差数列. (3)证明:∵ ∴ ∵≥(),k=1,2,…,n,

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开