温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2007
福建
高考
理科
数学
答案
2007年福建高考理科数学真题及答案
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数等于( )
A. B. C. D.
2.数列的前项和为,若,则等于( )
A.1 B. C. D.
3.已知集合,且,则实数的取值范围是( )
A. B. C. D.
4.对于向量和实数,下列命题中真命题是( )
A.若,则或 B.若,则或
C.若,则或 D.若,则
5.已知函数的最小正周期为,则该函数的图象( )
A.关于点对称 B.关于直线对称
C.关于点对称 D.关于直线对称
6.以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是( )
A. B.
C. D.
7.已知为上的减函数,则满足的实数的取值范围是( )
A. B. C. D.
8.已知为两条不同的直线,为两个不同的平面,则下列命题中正确的是( )
A.
B.
C.
D.
9.把展开成关于的多项式,其各项系数和为,则等于( )
A. B. C. D.2
10.顶点在同一球面上的正四棱柱中,,则两点间的球面距离为( )
A. B. C. D.
11.已知对任意实数,有,且时,,则时( )
A. B.
C. D.
12.如图,三行三列的方阵中有9个数,从中任取三个数,则至少有两个数位于同行或同列的概率是( )
A. B.
C. D.
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.
13.已知实数满足则的取值范围是________.
14.已知正方形,则以为焦点,且过两点的椭圆的离心率为______.
15.两封信随机投入三个空邮箱,则邮箱的信件数的数学期望 .
16.中学数学中存在许多关系,比如“相等关系”、“平行关系”等等.如果集合中元素之间的一个关系“”满足以下三个条件:
(1)自反性:对于任意,都有;
(2)对称性:对于,若,则有;
(3)传递性:对于,若,,则有.
则称“”是集合的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出三个等价关系:______.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
在中,,.
(Ⅰ)求角的大小;
(Ⅱ)若最大边的边长为,求最小边的边长.
18.(本小题满分12分)
A
B
C
D
如图,正三棱柱的所有棱长都为
,为中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
19.(本小题满分12分)
某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.
(Ⅰ)求分公司一年的利润(万元)与每件产品的售价的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值.
O
y
x
1
l
F
20.(本小题满分12分)如图,已知点,
直线,为平面上的动点,过作直线
的垂线,垂足为点,且.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点的直线交轨迹于两点,交直线于点,已知,,求的值;
21.(本小题满分12分)
等差数列的前项和为.
(Ⅰ)求数列的通项与前项和;
(Ⅱ)设,求证:数列中任意不同的三项都不可能成为等比数列.
22.(本小题满分14分)
已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意,恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:.
参考答案
一、选择题:本大题考查基本概念和基本运算,每小题5分,满分60分.
1.D 2.B 3.C 4.B 5.A 6.A 7.C 8.D 9.D 10.B
11.B 12.D
二、填空题:本大题考查基础知识和基本运算,每小题4分,满分16分.
13. 14. 15.
16.答案不唯一,如“图形的全等”、“图形的相似”、“非零向量的共线”、“命题的充要条件”等等.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.本小题主要考查两角和差公式,用同角三角函数关系等解斜三角形的基本知识以及推理和运算能力,满分12分.
解:(Ⅰ),
.
又,.
(Ⅱ),
边最大,即.
又,
角最小,边为最小边.
由且,
得.由得:.
所以,最小边.
A
B
C
D
O
F
18.本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分.
解法一:(Ⅰ)取中点,连结.
为正三角形,.
正三棱柱中,平面平面,
平面.
连结,在正方形中,分别为
的中点,
,
.
在正方形中,,
平面.
(Ⅱ)设与交于点,在平面中,作于,连结,由(Ⅰ)得平面.
,
为二面角的平面角.
在中,由等面积法可求得,
又,
.
所以二面角的大小为.
(Ⅲ)中,,.
在正三棱柱中,到平面的距离为.
设点到平面的距离为.
由得,
.
点到平面的距离为.
解法二:(Ⅰ)取中点,连结.
为正三角形,.
在正三棱柱中,平面平面,
平面.
取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
,,.
,,
x
z
A
B
C
D
O
F
y
,.
平面.
(Ⅱ)设平面的法向量为.
,.
,,
令得为平面的一个法向量.
由(Ⅰ)知平面,
为平面的法向量.
,.
二面角的大小为.
(Ⅲ)由(Ⅱ),为平面法向量,
.
点到平面的距离.
19.本小题考查函数、导数及其应用等知识,考查运用数学知识分析和解决实际问题的能力,满分12分.
解:(Ⅰ)分公司一年的利润(万元)与售价的函数关系式为:
.
(Ⅱ)
.
令得或(不合题意,舍去).
,.
在两侧的值由正变负.
所以(1)当即时,
.
(2)当即时,
,
所以
答:若,则当每件售价为9元时,分公司一年的利润最大,最大值(万元);若,则当每件售价为元时,分公司一年的利润最大,最大值(万元).
20.本小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.满分14分.
P
B
Q
M
F
O
A
x
y
解法一:(Ⅰ)设点,则,由得:
,化简得.
(Ⅱ)设直线的方程为:
.
设,,又,
联立方程组,消去得:
,,故
由,得:
,,整理得:
,,
.
解法二:(Ⅰ)由得:,
,
,
.
所以点的轨迹是抛物线,由题意,轨迹的方程为:.
(Ⅱ)由已知,,得.
则:.…………①
过点分别作准线的垂线,垂足分别为,,
则有:.…………②
由①②得:,即.
21.本小题考查数列的基本知识,考查等差数列的概念、通项公式与前项和公式,考查等比数列的概念与性质,考查化归的数学思想方法以及推理和运算能力.满分12分
解:(Ⅰ)由已知得,,
故.
(Ⅱ)由(Ⅰ)得.
假设数列中存在三项(互不相等)成等比数列,则.
即.
,
.
与矛盾.
所以数列中任意不同的三项都不可能成等比数列.
22.本小题主要考查函数的单调性、极值、导数、不等式等基本知识,考查运用导数研究函数性质的方法,考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力.满分14分.
解:(Ⅰ)由得,所以.
由得,故的单调递增区间是,
由得,故的单调递减区间是.
(Ⅱ)由可知是偶函数.
于是对任意成立等价于对任意成立.
由得.
①当时,.
此时在上单调递增.
故,符合题意.
②当时,.
当变化时的变化情况如下表:
单调递减
极小值
单调递增
由此可得,在上,.
依题意,,又.
综合①,②得,实数的取值范围是.
(Ⅲ),
,
,
由此得,
故.