分享
2007年湖南高考理科数学真题及答案.doc
下载文档

ID:2829902

大小:1.51MB

页数:10页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2007 湖南 高考 理科 数学 答案
2007年湖南高考理科数学真题及答案 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟. 参考公式: 如果事件、互斥,那么 如果事件、相互独立,那么 如果事件在一次试验中发生的概率是,那么次独立重复试验中恰好发生次的概率是 球的体积公式 ,球的表面积公式,其中表示球的半径 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数等于( ) A. B. C. D. 2.不等式的解集是( ) A. B. C. D. 3.设是两个集合,则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 4.设是非零向量,若函数的图象是一条直线,则必有( ) A. B. C. D. 5.设随机变量服从标准正态分布,已知,则=( ) A.0.025 B.0.050 C.0.950 D.0.975 6.函数的图象和函数的图象的交点个数是( ) A.4 B.3 C.2 D.1 7.下列四个命题中,不正确的是( ) A.若函数在处连续,则 B.函数的不连续点是和 C.若函数,满足,则 D. 8.棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( ) A. B. C. D. 9.设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是( ) A. B. C. D. 10.设集合, 都是的含两个元素的子集,且满足:对任意的,(,),都有(表示两个数中的较小者),则的最大值是( ) A.10 B.11 C.12 D.13 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.圆心为且与直线相切的圆的方程是 . 12.在中,角所对的边分别为,若,b=,,,则 . 13.函数在区间上的最小值是 . 14.设集合,,, (1)的取值范围是 ; (2)若,且的最大值为9,则的值是 . 15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第次全行的数都为1的是第 行;第61行中1的个数是 . 第1行      1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1 …… ……………………………………… 图1 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数,. (I)设是函数图象的一条对称轴,求的值. (II)求函数的单调递增区间. 17.(本小题满分12分) 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (I)任选1名下岗人员,求该人参加过培训的概率; (II)任选3名下岗人员,记为3人中参加过培训的人数,求的分布列和期望. 18.(本小题满分12分) 如图2,分别是矩形的边的中点,是上的一点,将,分别沿翻折成,,并连结,使得平面平面,,且.连结,如图3. A E B C F D G     图2 图3 (I)证明:平面平面; (II)当,,时,求直线和平面所成的角. 19.(本小题满分12分) 如图4,某地为了开发旅游资源,欲修建一条连接风景点和居民区的公路,点所在的山坡面与山脚所在水平面所成的二面角为(),且,点到平面的距离(km).沿山脚原有一段笔直的公路可供利用.从点到山脚修路的造价为万元/km,原有公路改建费用为万元/km.当山坡上公路长度为km()时,其造价为万元.已知,,,. (I)在上求一点,使沿折线修建公路的总造价最小; (II) 对于(I)中得到的点,在上求一点,使沿折线修建公路的总造价最小. (III)在上是否存在两个不同的点,,使沿折线修建公路的总造价小于(II)中得到的最小总造价,证明你的结论. 20.(本小题满分12分) 已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两点. (I)若动点满足(其中为坐标原点),求点的轨迹方程; (II)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由. 21.(本小题满分13分) 已知()是曲线上的点,,是数列的前项和,且满足,,…. (I)证明:数列()是常数数列; (II)确定的取值集合,使时,数列是单调递增数列; (III)证明:当时,弦()的斜率随单调递增. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.C 2.D 3.B 4.A 5.C 6.B 7.C 8.D 9.D 10.B 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11. 12. 13. 14.(1)(2) 15.,32 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(I)由题设知. 因为是函数图象的一条对称轴,所以, 即(). 所以. 当为偶数时,, 当为奇数时,. (II) . 当,即()时, 函数是增函数, 故函数的单调递增区间是(). 17.解:任选1名下岗人员,记“该人参加过财会培训”为事件,“该人参加过计算机培训”为事件,由题设知,事件与相互独立,且,. (I)解法一:任选1名下岗人员,该人没有参加过培训的概率是 所以该人参加过培训的概率是. 解法二:任选1名下岗人员,该人只参加过一项培训的概率是 该人参加过两项培训的概率是. 所以该人参加过培训的概率是. (II)因为每个人的选择是相互独立的,所以3人中参加过培训的人数服从二项分布,,,即的分布列是 0 1 2 3 0.001 0.027 0. 243 0.729 的期望是. (或的期望是) 18.解:解法一:(I)因为平面平面,平面平面,,平面,所以平面,又平面,所以平面平面. (II)过点作于点,连结. 由(I)的结论可知,平面, 所以是和平面所成的角. 因为平面平面,平面平面,, 平面,所以平面,故. 因为,,所以可在上取一点,使,又因为,所以四边形是矩形. 由题设,,,则.所以,, ,. 因为平面,,所以平面,从而. 故,. 又,由得. 故. 即直线与平面所成的角是. 解法二:(I)因为平面平面,平面平面,, 平面,所以平面,从而.又,所以平面.因为平面,所以平面平面. (II)由(I)可知,平面.故可以为原点,分别以直线为轴、轴、轴建立空间直角坐标系(如图), 由题设,,,则, ,,相关各点的坐标分别是, ,,. 所以,. 设是平面的一个法向量, 由得故可取. 过点作平面于点,因为,所以,于是点在轴上. 因为,所以,. 设(),由,解得, 所以. 设和平面所成的角是,则 . 故直线与平面所成的角是. 19.解:(I)如图,,,, 由三垂线定理逆定理知,,所以是 山坡与所成二面角的平面角,则, . 设,.则 . 记总造价为万元, 据题设有 当,即时,总造价最小. (II)设,,总造价为万元,根据题设有 . 则,由,得. 当时,,在内是减函数; 当时,,在内是增函数. 故当,即(km)时总造价最小,且最小总造价为万元. (III)解法一:不存在这样的点,. 事实上,在上任取不同的两点,.为使总造价最小,显然不能位于 与之间.故可设位于与之间,且=,,,总造价为万元,则.类似于(I)、(II)讨论知,,,当且仅当,同时成立时,上述两个不等式等号同时成立,此时,,取得最小值,点分别与点重合,所以不存在这样的点 ,使沿折线修建公路的总造价小于(II)中得到的最小总造价. 解法二:同解法一得 . 当且仅当且,即同时成立时,取得最小值,以上同解法一. 20.解:由条件知,,设,. 解法一:(I)设,则则,, ,由得 即 于是的中点坐标为. 当不与轴垂直时,,即. 又因为两点在双曲线上,所以,,两式相减得 ,即. 将代入上式,化简得. 当与轴垂直时,,求得,也满足上述方程. 所以点的轨迹方程是. (II)假设在轴上存在定点,使为常数. 当不与轴垂直时,设直线的方程是. 代入有. 则是上述方程的两个实根,所以,, 于是 . 因为是与无关的常数,所以,即,此时=. 当与轴垂直时,点的坐标可分别设为,, 此时. 故在轴上存在定点,使为常数. 解法二:(I)同解法一的(I)有 当不与轴垂直时,设直线的方程是. 代入有. 则是上述方程的两个实根,所以. . 由①②③得.…………………………………………………④ .……………………………………………………………………⑤ 当时,,由④⑤得,,将其代入⑤有 .整理得. 当时,点的坐标为,满足上述方程. 当与轴垂直时,,求得,也满足上述方程. 故点的轨迹方程是. (II)假设在轴上存在定点点,使为常数, 当不与轴垂直时,由(I)有,. 以上同解法一的(II). 21.解:(I)当时,由已知得. 因为,所以. ………………… ① 于是. ……………………② 由②-①得. ……………………③ 于是. ……………………④ 由④-③得, ……………………⑤ 所以,即数列是常数数列. (II)由①有,所以.由③有,,所以,. 而 ⑤表明:数列和分别是以,为首项,6为公差的等差数列, 所以,,, 数列是单调递增数列且对任意的成立. 且 . 即所求的取值集合是. (III)解法一:弦的斜率为 任取,设函数,则 记,则, 当时,,在上为增函数, 当时,,在上为减函数, 所以时,,从而,所以在和上都是增函数. 由(II)知,时,数列单调递增, 取,因为,所以. 取,因为,所以. 所以,即弦的斜率随单调递增. 解法二:设函数,同解法一得,在和上都是增函数, 所以,. 故,即弦的斜率随单调递增.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开