温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2007
山东
高考
文科
数学
答案
2007年山东高考文科数学真题及答案
第Ⅰ卷(共60分)
一、选择题:本大题共12小题,每小题5分,共50分,在每小题给出的四个选项中,选择一个符合题目要求的选项.
1.复数的实部是( )
A. B. C.3 D.
2.已知集合,则( )
A. B. C. D.
3.下列几何体各自的三视图中,有且仅有两个视图相同的是( )
①正方形
②圆锥
③三棱台
④正四棱锥
A.①② B.①③ C.①④ D.②④
4.要得到函数的图象,只需将函数的图象( )
A.向右平移个单位 B.向右平移个单位
C.向左平移个单位 D.向左平移个单位
5.已知向量,若与垂直,则( )
A. B. C. D.4
6.给出下列三个等式:,.下列函数中不满足其中任何一个等式的是( )
A. B. C. D.
7.命题“对任意的”的否定是( )
A.不存在 B.存在
0
13
14
15
16
17
18
19
秒
频率
0.02
0.04
0.06
0.18
0.34
0.36
C.存在 D.对任意的
8.某班50名学生在一次百米测试中,成绩全部介
于13秒与19秒之间,将测试结果按如下方式分成六
组:每一组,成绩大于等于13秒且小于14秒;第二
组,成绩大于等于14秒且小于15秒;……第六组,
成绩大于等于18秒且小于等于19秒.右图是按上述
分组方法得到的频率分布直方图,设成绩小于17秒
的学生人数占全班人数的百分比为,成绩大于等于
15秒且小于17秒的学生人数为,则从频率分布直方
图中可以分析出和分别为( )
A. B.
C. D.
开始
输入
结束
输出S,T
否
是
9.设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为( )
A. B. C. D.
10.阅读右边的程序框,若输入的是100,则输出的
变量和的值依次是( )
A.2550,2500
B.2550,2550
C.2500,2500
D.2500,2550
11.设函数与的图象的交点为,
则所在的区间是( )
A. B. C. D.
12.设集合,分别从集合和中随机取一个数和,确定平面上的一个点,记“点落在直线上”为事件,若事件的概率最大,则的所有可能值为( )
A.3 B.4 C.2和5 D.3和4
第Ⅱ卷(共90分)
二、填空题:本大题共4小题,每小题4分,共16分,答案须填在题中横线上.
13.设函数,则 .
14.函数的图象恒过定点,若点在直线上,则的最小值为 .
15.当时,不等式恒成立,则的取值范围是 .
16.与直线和曲线都相切的半径最小的圆的标准方程是 .
三、解答题:本大题共5小题,共74分.解答写出文字说明、证明过程或演算步骤.
17.(本小题满分12分)
在中,角的对边分别为.
(1)求;
(2)若,且,求.
18.(本小题满分12分)
设是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.
(1)求数列的等差数列.
(2)令求数列的前项和.
19.(本小题满分12分)
B
C
D
A
本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
20.(本小题满分12分)
如图,在直四棱柱中,
已知,.
(1)求证:;
(2)设是上一点,试确定的位置,使平面
,并说明理由.
21.(本小题满分12分)
设函数,其中.
证明:当时,函数没有极值点;当时,函数有且只有一个极值点,并求出极值.
22.(本小题满分14分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),且以 为直径的图过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.
答案
一、选择题
1.B 2.C 3.D 4.A 5.C 6.B
7.C 8.A 9.B 10.A 11.B 12.D
二、填空题
13. 14. 15. 16.
三、解答题
17.解:(1)
又
解得.
,是锐角.
.
(2),
,
.
又
.
.
.
.
18.解:(1)由已知得
解得.
设数列的公比为,由,可得.
又,可知,
即,
解得.
由题意得.
.
故数列的通项为.
(2)由于
由(1)得
又
是等差数列.
故.
0
100
200
300
100
200
300
400
500
y
x
l
M
19.解:设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得
目标函数为.
二元一次不等式组等价于
作出二元一次不等式组所表示的平面区域,即可行域.
如图:
作直线,
即.
平移直线,从图中可知,当直线过点时,目标函数取得最大值.
联立解得.
点的坐标为.
(元)
答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.
B
C
D
A
20.(1)证明:在直四棱柱中,
连结,
,
四边形是正方形.
.
又,,
平面,
平面,
.
B
C
D
A
M
E
平面,
且,
平面,
又平面,
.
(2)连结,连结,
设,
,连结,
平面平面,
要使平面,
须使,
又是的中点.
是的中点.
又易知,
.
即是的中点.
综上所述,当是的中点时,可使平面.
21.证明:因为,所以的定义域为.
.
当时,如果在上单调递增;
如果在上单调递减.
所以当,函数没有极值点.
当时,
令,
将(舍去),,
当时,随的变化情况如下表:
0
极小值
从上表可看出,
函数有且只有一个极小值点,极小值为.
当时,随的变化情况如下表:
0
极大值
从上表可看出,
函数有且只有一个极大值点,极大值为.
综上所述,
当时,函数没有极值点;
当时,
若时,函数有且只有一个极小值点,极小值为.
若时,函数有且只有一个极大值点,极大值为.
22.解:(1)由题意设椭圆的标准方程为,
由已知得:,
椭圆的标准方程为.
(2)设.
联立
得 ,则
又.
因为以为直径的圆过椭圆的右顶点,
,即.
.
.
.
解得:,且均满足.
当时,的方程,直线过点,与已知矛盾;
当时,的方程为,直线过定点.
所以,直线过定点,定点坐标为.