分享
2007年天津高考理科数学真题及答案.doc
下载文档

ID:2829541

大小:1.27MB

页数:13页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2007 天津 高考 理科 数学 答案
2007年天津高考理科数学真题及答案 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回. 祝各位考生考试顺利! 第Ⅰ卷 注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: ·如果事件互斥,那么 球的表面积公式 ·如果事件相互独立,那么 其中表示球的半径 一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的. 1.是虚数单位,(  ) A. B. C. D. 2.设变量满足约束条件则目标函数的最大值为(  ) A.4 B.11 C.12 D.14 3.“”是“”的(  ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.设双曲线的离心率为,且它的一条准线与抛物线的准线重合,则此双曲线的方程为(  ) A. B. C. D. 5.函数的反函数是(  ) A. B. C. D. 6.设为两条直线,为两个平面,下列四个命题中,正确的命题是(  ) A.若与所成的角相等,则 B.若,,则 C.若,则 D.若,,则 7.在上定义的函数是偶函数,且,若在区间上是减函数,则(  ) A.在区间上是增函数,在区间上是增函数 B.在区间上是增函数,在区间上是减函数 C.在区间上是减函数,在区间上是增函数 D.在区间上是减函数,在区间上是减函数 8.设等差数列的公差不为0,.若是与的等比中项,则(  ) A.2 B.4 C.6 D.8 9.设均为正数,且,,.则(  ) A. B. C. D. 10.设两个向量和,其中为实数.若,中央电视台的取值范围是(  ) A. B. C. D. 第Ⅱ卷 注意事项: 1.答案前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分. 二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上. 11.若的二项展开式中的系数为,则    (用数字作答). 12.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为     . 13.设等差数列的公差是2,前项的和为,则      . 14.已知两圆和相交于两点,则直线的方程是     . 15.如图,在中,,是边上一点,,则     . 16.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有     种(用数字作答). 三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)求函数在区间上的最小值和最大值. 18.(本小题满分12分) 已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; (Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望. 19.(本小题满分12分) 如图,在四棱锥中,底面,,,是的中点. (Ⅰ)证明; (Ⅱ)证明平面; (Ⅲ)求二面角的大小. 20.(本小题满分12分) 已知函数,其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求函数的单调区间与极值. 21.(本小题满分14分) 在数列中,,其中. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和; (Ⅲ)证明存在,使得对任意均成立. 22.(本小题满分14分) 设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为. (Ⅰ)证明; (Ⅱ)设为椭圆上的两个动点,,过原点作直线的垂线,垂足为,求点的轨迹方程. 参考解答 一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C 6.D 7.B 8.B 9.A 10.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.2 12. 13.3 14. 15. 16.390 三、解答题 17.本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数的性质等基础知识,考查基本运算能力.满分12分. (Ⅰ)解:. 因此,函数的最小正周期为. (Ⅱ)解法一:因为在区间上为增函数,在区间上为减函数,又,,, 故函数在区间上的最大值为,最小值为. 解法二:作函数在长度为一个周期的区间上的图象如下: y x O 由图象得函数在区间上的最大值为,最小值为. 18.本小题主要考查互斥事件、相互独立事件、离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且,. 故取出的4个球均为黑球的概率为. (Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥, 且,. 故取出的4个球中恰有1个红球的概率为. (Ⅲ)解:可能的取值为.由(Ⅰ),(Ⅱ)得,, .从而. 的分布列为 0 1 2 3 的数学期望. 19.本小题考查直线与直线垂直、直线与平面垂直、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分. (Ⅰ)证明:在四棱锥中,因底面,平面,故. ,平面. 而平面,. (Ⅱ)证明:由,,可得. 是的中点,. 由(Ⅰ)知,,且,所以平面. 而平面,. 底面在底面内的射影是,,. 又,综上得平面. (Ⅲ)解法一:过点作,垂足为,连结.则(Ⅱ)知,平面,在平面内的射影是,则. 因此是二面角的平面角. 由已知,得.设, 可得. 在中,,, 则. 在中,. 所以二面角的大小是. 解法二:由题设底面,平面,则平面平面,交线为. 过点作,垂足为,故平面.过点作,垂足为,连结,故.因此是二面角的平面角. 由已知,可得,设, 可得. ,. 于是,. 在中,. 所以二面角的大小是. 20.本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.满分12分. (Ⅰ)解:当时,,, 又,. 所以,曲线在点处的切线方程为, 即. (Ⅱ)解:. 由于,以下分两种情况讨论. (1)当时,令,得到,.当变化时,的变化情况如下表: 0 0 极小值 极大值 所以在区间,内为减函数,在区间内为增函数. 函数在处取得极小值,且, 函数在处取得极大值,且. (2)当时,令,得到,当变化时,的变化情况如下表: 0 0 极大值 极小值 所以在区间,内为增函数,在区间内为减函数. 函数在处取得极大值,且. 函数在处取得极小值,且. 21.本小题以数列的递推关系式为载体,主要考查等比数列的前项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解法一:, , . 由此可猜想出数列的通项公式为. 以下用数学归纳法证明. (1)当时,,等式成立. (2)假设当时等式成立,即, 那么 . 这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何都成立. 解法二:由,, 可得, 所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为. (Ⅱ)解:设,   ①         ② 当时,①式减去②式, 得, . 这时数列的前项和. 当时,.这时数列的前项和. (Ⅲ)证明:通过分析,推测数列的第一项最大,下面证明: .    ③ 由知,要使③式成立,只要, 因为 . 所以③式成立. 因此,存在,使得对任意均成立. 22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分. (Ⅰ)证法一:由题设及,,不妨设点,其中.由于点在椭圆上,有,即. 解得,从而得到. 直线的方程为,整理得. 由题设,原点到直线的距离为,即, 将代入上式并化简得,即. 证法二:同证法一,得到点的坐标为. 过点作,垂足为,易知,故. 由椭圆定义得,又, 所以, 解得,而,得,即. (Ⅱ)解法一:设点的坐标为. 当时,由知,直线的斜率为,所以直线的方程为,或,其中,. 点的坐标满足方程组 将①式代入②式,得, 整理得, 于是,. 由①式得 . 由知.将③式和④式代入得, . 将代入上式,整理得. 当时,直线的方程为,的坐标满足方程组 所以,. 由知,即, 解得. 这时,点的坐标仍满足. 综上,点的轨迹方程为 . 解法二:设点的坐标为,直线的方程为,由,垂足为,可知直线的方程为. 记(显然),点的坐标满足方程组 由①式得.      ③ 由②式得.   ④ 将③式代入④式得. 整理得, 于是.   ⑤ 由①式得.   ⑥ 由②式得.  ⑦ 将⑥式代入⑦式得, 整理得, 于是.   ⑧ 由知.将⑤式和⑧式代入得, . 将代入上式,得. 所以,点的轨迹方程为.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开