分享
2001年北京高考理科数学真题及答案.doc
下载文档

ID:2829423

大小:528KB

页数:11页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2001 北京 高考 理科 数学 答案
2001年北京高考理科数学真题及答案 本试卷分第I卷(选择题)和第II卷(非选择题)两部分。第I卷1至2页。第II卷3至9页。共150分。考试时间120分钟。 第I卷(选择题 60分) 注意事项: 1. 答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。 2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。 3.考试结束,监考人将本试卷和答题卡一并收回。 参考公式: 三角函数的积化和差公式 正棱台、圆台的侧面积公式 其中、分别表示上、下底面周长,表示斜高或母线长 台体的体积公式 其中、分别表示上、下底面积,表示高 一、 选择题:本大题共12小题;第每小题5分,共60分。在每小题给出的 四个选项中,只有一项是符合题目要求的。 (1) 若,则在 (A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限 (2)过点且圆心在直线上的圆的方程是 (A) (B) (C) (D) (3)设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A)1 (B)2 (C)4 (D)6 (4)若定义在区间内的函数满足,则的取值范围是 (A)(0,) (B)(0, (C)(,+) (D)(0,+) (5)极坐标方程的图形是 (A) (B) (C) (D) (6)函数的反函数是 (A) (B) (C) (D) (7)若椭圆经过原点,且焦点为,则其离心率为 (A) (B) (C) (D) (8)若,,,则 (A) (B) (C) (D) (9)在正三棱柱中,若,则与所成的角的大小为 (A)60° (B)90° (C)105° (D)75° (10)设都是单调函数,有如下四个命题: 若单调递增,单调递增,则单调递增; 若单调递增,单调递减,则单调递增; 若单调递减,单调递增,则单调递减; 若单调递减,单调递减,则单调递减; 其中,正确的命题是 (A) (B) (C) (D) (11)一间民房的屋顶有如图三种不同的盖法:单向倾斜;双向倾斜;四向倾斜.记三种盖法屋顶面积分别为. 若屋顶斜面与水平面所成的角都是,则 (A)(B)(C)(D) (12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。连线标注的数字表示该段网线单位时间内可以通过的最大信息量。现从结点向结点传递信息,信息可以分开沿不同的路线同时传递。则单位时间内传递的最大信息量为 (A)26 (B)24 (C)20 (D)19 第II卷(非选择题 90分) 注意事项: 1. 第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。 2. 答卷前将密封线内的项目填写清楚。 二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横 线上。 (13)若一个椭圆的轴截面是等边三角形,其面积为,则这个椭圆的侧面积是 (14)双曲线的两个焦点为,点在双曲线上.若⊥,则点到x轴的距离为 . (15)设是公比为的等比数列,是它的前n项和.若是等差数列,则 . (16)圆周上有2n个等分点(),以其中三个点为顶点的直角三角形的个数为 . 三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或 演算步骤。 (17)(本小题满分12分) 如图,在底面是直角梯形的四棱锥中, ∠°,⊥面,, . (Ⅰ)求四棱锥的体积; (Ⅱ)求面与面所成的二面角的正切值. (18) (本小题满分12分) 已知复数. (Ⅰ)求及; (Ⅱ)当复数满足,求的最大值. (19)(本小题满分12分) 设抛物线的焦点为F,经过点F的直线交抛物线于两点. 点在抛物线的准线上,且∥x轴. 证明直线经过原点. (20)(本小题满分12分) 已知是正整数,且. (Ⅰ)证明 ; (Ⅱ)证明 . (21) (本小题满分12分) 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少. 本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加. (Ⅰ)设n年内(本年度为第一年)总投入为万元,旅游业总收入为万元. 写出的表达式; (Ⅱ)至少经过几年旅游业的总收入才能超过总投入? (22) (本小题满分14分) 设是定义在上的偶函数,其图象关于直线对称,对任意,都有,且. (Ⅰ)求及; (Ⅱ)证明是周期函数; (Ⅲ)记,求. 普通高等学校招生全国统一考试 数学试题(理工农医类)参考解答及评分标准 说明: 一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分. 一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分. (1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D 二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分. (13)2π (14) (15)1 (16)2n (n-1) 三.解答题: (17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分. 解:(Ⅰ)直角梯形ABCD的面积是 M底面, ……2分 ∴ 四棱锥S—ABCD的体积是 M底面 . ……4分 (Ⅱ)延长BA、CD相交于点E,连结SE则SE是所求二面角的棱. ……6分 ∵ AD∥BC,BC = 2AD, ∴ EA = AB = SA,∴ SE⊥SB, ∵ SA⊥面ABCD,得SEB⊥面EBC,EB是交线, 又BC⊥EB,∴ BC⊥面SEB, 故SB是CS在面SEB上的射影, ∴ CS⊥SE, 所以∠BSC是所求二面角的平面角. ……10分 ∵ ,BC =1,BC⊥SB, ∴ tan∠BSC . 即所求二面角的正切值为. ……12分 (18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分. 解:(Ⅰ)z1 = i (1-i) 3 = 2-2i, 将z1化为三角形式,得 , ∴ ,. ……6分 (Ⅱ)设z = cos α+i sin α,则 z-z1 = ( cos α-2)+(sin α+2) i, (), ……9分 当sin() = 1时,取得最大值. 从而得到的最大值为. ……12分 (19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分. 证明一:因为抛物线y2 =2px (p>0)的焦点为F (,0),所以经过点F的直线的方程可设为 ; ……4分 代入抛物线方程得 y2 -2pmy-p2 = 0, 若记A(x1,y1),B(x2,y2),则y1,y2是该方程的两个根,所以 y1y2 = -p2. ……8分 因为BC∥x轴,且点c在准线x = -上,所以点c的坐标为(-,y2),故直线CO的斜率为 . 即k也是直线OA的斜率,所以直线AC经过原点O. ……12分 证明二:如图,记x轴与抛物线准线l的交点为E,过A作AD⊥l,D是垂足.则 AD∥FE∥BC. ……2分 连结AC,与EF相交于点N,则 , ……6分 根据抛物线的几何性质,, , ……8分 ∴ , 即点N是EF的中点,与抛物线的顶点O重合,所以直线AC经过原点O. ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分. (Ⅰ)证明: 对于1<i≤m有 = m·…·(m-i+1), …, 同理 …, ……4分 由于 m<n,对整数k = 1,2…,i-1,有, 所以 ,即. ……6分 (Ⅱ)证明由二项式定理有 , , ……8分 由 (Ⅰ)知>(1<i≤m<n=, 而 ,, ……10分 所以, (1<i≤m<n=. 因此,. 又 ,,. ∴ . 即 (1+m)n>(1+n)m. ……12分 (21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分. 解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-)万元,……,第n年投入为800×(1-)n-1万元. 所以,n年内的总投入为 an = 800+800×(1-)+…+800×(1-)n-1 = 4000×[1-()n]; ……3分 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+)万元,……,第n年旅游业收入为400×(1+)n-1万元. 所以,n年内的旅游业总收入为 bn = 400+400×(1+)+…+400×(1+)n-1 = 1600×[ ()n-1]. ……6分 (Ⅱ)设至少经过n年旅游业的总收入才能超过总投入,由此 bn-an>0, 即 1600×[()n -1]-4000×[1-()n]>0. 化简得 5×()n+2×()n -7>0, ……9分 设()n,代入上式得 5x2-7x+2>0, 解此不等式,得 ,x>1(舍去). 即 ()n<, 由此得 n≥5. 答:至少经过5年旅游业的总收入才能超过总投入. ……12分 (22)本小题主要考查函数的概念、图像,函数的奇偶性和周期性以及数列极限等基础知识;考查运算能力和逻辑思维能力.满分14分. (Ⅰ)解:因为对x1,x2∈[0,],都有f (x1+x2) = f (x1) · f (x2),所以 f () · f ()≥0,x∈[0,1]. ∵ f () = f () · f () = [f ()]2, f ()f () = f () · f () = [f ()]2. ……3分 , ∴ f (),f (). ……6分 (Ⅱ)证明:依题设y = f (x)关于直线x = 1对称, 故 f (x) = f (1+1-x), 即f (x) = f (2-x),x∈R. ……8分 又由f (x)是偶函数知f (-x) = f (x) ,x∈R, ∴ f (-x) = f (2-x) ,x∈R, 将上式中-x以x代换,得 f (x) = f (x+2),x∈R. 这表明f (x)是R上的周期函数,且2是它的一个周期. ……10分 (Ⅲ)解:由(Ⅰ)知f (x)≥0,x∈[0,1]. ∵ f ()= f (n ·) = f (+(n-1)·) = f () · f ((n-1)·) = f () · f () · … ·f () = [ f ()]n, f () = , ∴ f () = . ∵ f (x)的一个周期是2, ∴ f (2n+) = f (),因此an = , ……12分 ∴ () = 0. ……14分

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开