分享
2007年天津高考文科数学真题及答案.doc
下载文档

ID:2829413

大小:1MB

页数:11页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2007 天津 高考 文科 数学 答案
2007年天津高考文科数学真题及答案 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回. 祝各位考生考试顺利! 第Ⅰ卷 注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件互斥,那么 球的表面积公式 如果事件相互独立,那么 其中表示球的半径 一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的. (1)已知集合,,则( ) A. B. C. D. (2)设变量满足约束条件则目标函数的最大值为(  ) A.10 B.12 C.13 D.14 (3) “”是“直线平行于直线”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 (4)设,,,则( ) A. B. C. D. (5)函数的反函数是( ) A. B. C. D. (6)设为两条直线,为两个平面,下列四个命题中,正确的命题是( ) A.若与所成的角相等,则 B.若,,,则 C.若,,,则 D.若,,,则 (7)设双曲线的离心率为,且它的一条准线与抛物线的准线重合,则此双曲线的方程为(  ) A. B. C. D. (8)设等差数列的公差不为0,.若是与的等比中项,则(  ) A.2 B.4 C.6 D.8 (9)设函数,则( ) A.在区间上是增函数 B.在区间上是减函数 C.在区间上是增函数 D.在区间上是减函数 (10)设是定义在上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是( ) A. B. C. D. 第Ⅱ卷 注意事项: 1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分. 二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. (11)从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下: 分组 频数 1 2 3 10 1 则这堆苹果中,质量不小于120克的苹果数约占苹果总数的 %. (12)的二项展开式中常数项是 (用数字作答). (13)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为,,,则此球的表面积为 . (14)已知两圆和相交于两点,则直线的方程是     . (15)在中,,,是边的中点,则 . (16)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有     种(用数字作答). 三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 在中,已知,,. (Ⅰ)求的值; (Ⅱ)求的值. (18)(本小题满分12分) 已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为红球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; (19)(本小题满分12分) 如图,在四棱锥中,底面, ,,是的中点. (Ⅰ)求和平面所成的角的大小; (Ⅱ)证明平面; (Ⅲ)求二面角的大小. (20)(本小题满分12分) 在数列中,,,. (Ⅰ)证明数列是等比数列; (Ⅱ)求数列的前项和; (Ⅲ)证明不等式,对任意皆成立. (21)(本小题满分14分) 设函数(),其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求函数的极大值和极小值; (Ⅲ)当时,证明存在,使得不等式对任意的恒成立. (22)(本小题满分14分) 设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为. (Ⅰ)证明; (Ⅱ)求使得下述命题成立:设圆上任意点处的切线交椭圆于,两点,则. 参考答案 一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. (1)B (2)C (3)C (4)A (5)C (6)D (7)D (8)B (9)A (10)A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. (11) (12) (13) (14) (15) (16) 三、解答题 (17)本小题考查同角三角函数的基本关系式、两角和公式、倍角公式、正弦定理等的知识,考查基本运算能力.满分12分. (Ⅰ)解:在中,,由正弦定理, . 所以. (Ⅱ)解:因为,所以角为钝角,从而角为锐角,于是 , , . . (18)本小题主要考查互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)解:设“从甲盒内取出的2个球均为红球”为事件,“从乙盒内取出的2个球均为红球”为事件.由于事件相互独立,且 ,, 故取出的4个球均为红球的概率是 . (Ⅱ)解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件.由于事件互斥,且 ,. 故取出的4个红球中恰有4个红球的概率为 . (19)本小题考查直线与平面垂直、直线和平面所成的角、二面角等基础知识.考查空间想象能力、记忆能力和推理论证能力.满分12分. (Ⅰ)解:在四棱锥中,因底面,平面,故. 又,,从而平面.故在平面内的射影为,从而为和平面所成的角. 在中,,故. 所以和平面所成的角的大小为. (Ⅱ)证明:在四棱锥中, 因底面,平面,故. 由条件,,面. 又面,. 由,,可得. 是的中点,, .综上得平面. (Ⅲ)解:过点作,垂足为,连结.由(Ⅱ)知,平面,在平面内的射影是,则. 因此是二面角的平面角. 由已知,可得.设,可得 ,,,. 在中,,,则 . 在中,. 所以二面角的大小. (20)本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力.满分12分. (Ⅰ)证明:由题设,得 ,. 又,所以数列是首项为,且公比为的等比数列. (Ⅱ)解:由(Ⅰ)可知,于是数列的通项公式为 . 所以数列的前项和. (Ⅲ)证明:对任意的, . 所以不等式,对任意皆成立. (21)本小题主要考查运用导数研究函数的性质、曲线的切线方程,函数的极值、解不等式等基础知识,考查综合分析和解决问题的能力及分类讨论的思想方法.满分14分. (Ⅰ)解:当时,,得,且 ,. 所以,曲线在点处的切线方程是,整理得 . (Ⅱ)解: . 令,解得或. 由于,以下分两种情况讨论. (1)若,当变化时,的正负如下表: 因此,函数在处取得极小值,且 ; 函数在处取得极大值,且 . (2)若,当变化时,的正负如下表: 因此,函数在处取得极小值,且 ; 函数在处取得极大值,且 . (Ⅲ)证明:由,得,当时, ,. 由(Ⅱ)知,在上是减函数,要使, 只要 即         ① 设,则函数在上的最大值为. 要使①式恒成立,必须,即或. 所以,在区间上存在,使得对任意的恒成立. (22)本小题主要考查椭圆的标准方程和几何性质、直线方程、两条直线垂直、圆的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分. (Ⅰ)证法一:由题设及,,不妨设点,其中 ,由于点在椭圆上,有, , 解得,从而得到, 直线的方程为,整理得 . 由题设,原点到直线的距离为,即 , 将代入原式并化简得,即. 证法二:同证法一,得到点的坐标为, 过点作,垂足为,易知,故 由椭圆定义得,又,所以 , 解得,而,得,即. (Ⅱ)解法一:圆上的任意点处的切线方程为. 当时,圆上的任意点都在椭圆内,故此圆在点处的切线必交椭圆于两个不同的点和,因此点,的坐标是方程组 的解.当时,由①式得 代入②式,得,即 , 于是, . 若,则 . 所以,.由,得.在区间内此方程的解为. 当时,必有,同理求得在区间内的解为. 另一方面,当时,可推出,从而. 综上所述,使得所述命题成立.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开