分享
2005年北京高考理科数学真题及答案.doc
下载文档

ID:2829293

大小:386KB

页数:10页

格式:DOC

时间:2024-01-05

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2005 北京 高考 理科 数学 答案
2005年北京高考理科数学真题及答案 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷 1至2页,第II卷3至9页,共150分。考试时间120分钟。考试结束,将本试卷和答题卡一并交回。 第I卷(选择题共40分) 注意事项: 1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试卷上。 一、本大题共8小题.每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项. (1)设全集U=R,集合M={x| x>1,P={x| x2>1},则下列关系中正确的是 (A)M=P (B)PM (C)MP ( D) (2)“m=”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的 (A)充分必要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件 (3)若,且,则向量与的夹角为 (A)30° (B)60° (C)120° (D)150° (4)从原点向圆 x2+y2-12y+27=0作两条切线,则该圆夹在两条切线间的劣弧长为 (A)π (B)2π (C)4π (D)6π (5)对任意的锐角α,β,下列不等关系中正确的是 (A)sin(α+β)>sinα+sinβ (B)sin(α+β)>cosα+cosβ (C)cos(α+β)<sinα+sinβ (D)cos(α+β)<cosα+cosβ (6)在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是 (A)BC//平面PDF (B)DF⊥平面PA E (C)平面PDF⊥平面ABC (D)平面PAE⊥平面 ABC (7)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为 (A) (B) (C) (D) (8)函数f(x)= (A)在上递增,在上递减 (B)在上递增,在上递减 (C)在上递增,在上递减 (D)在上递增,在上递减 二、填空题:本大题共6小题;每小题5分,共30分。把答案填在题中横线上。 (9)若 , ,且为纯虚数,则实数a的值为 . (10)已知tan=2,则tanα的值为 ,tan的值为 . (11)的展开式中的常数项是 (用数字作答) (12)过原点作曲线y=ex的切线,则切点的坐标为 ,切线的斜率为 . (13)对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论: ①f(x1+x2)=f(x1)·f(x2);② f(x1·x2)=f(x1)+f(x2); ③>0;④. 当f(x)=lgx时,上述结论中正确结论的序号是 . (14)已知n次多项式, 如果在一种算法中,计算(k=2,3,4,…,n)的值需要k-1次乘法,计算的值共需要9次运算(6次乘法,3次加法),那么计算的值共需要 次运算. 下面给出一种减少运算次数的算法:(k=0, 1,2,…,n-1).利用该算法,计算的值共需要6次运算,计算的 值共需要 次运算. 三、解答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。 (15)(本小题共13分) 已知函数f(x)=-x3+3x2+9x+a, (I)求f(x)的单调递减区间; (II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值. (16)(本小题共14分) 如图, 在直四棱柱ABCD-A1B1C1D1中,AB=AD=2,DC=2,AA1=,AD⊥DC,AC⊥BD, 垂足未E, (I)求证:BD⊥A1C; (II)求二面角A 1-BD-C 1的大小; (III)求异面直线 AD与 BC 1所成角的大小. (17)(本小题共13分) 甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率, (I)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望Eξ; (II)求乙至多击中目标2次的概率; (III)求甲恰好比乙多击中目标2次的概率. (18)(本小题共14分) 如图,直线 l1:y=kx(k>0)与直线l2:y=-kx之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2. (I)分别用不等式组表示W1和W2; (II)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程; (III)设不过原点O的直线l与(II)中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点.求证△OM1M2的重心与△OM3M4的重心重合. (19)(本小题共12分) 设数列{an}的首项a1=a≠,且, 记,n==l,2,3,…·. (I)求a2,a3; (II)判断数列{bn}是否为等比数列,并证明你的结论; (III)求. (20)(本小题共14分) 设f(x)是定义在[0, 1]上的函数,若存在x*∈(0,1),使得f(x)在[0, x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0, 1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间. 对任意的[0,l]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法. (I)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x*,1)为含峰区间; (II)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(I)所确定的含峰区间的长度不大于 0.5+r; (III)选取x1,x2∈(0, 1),x1<x2,由(I)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差) 参考答案 一、选择题(本大题共8小题,每小题5分,共40分) (1) C (2)B (3)C (4)B (5)D (6)C (7)A (8)A 二、填空题(本大题共6小题,每小题5分,共30分) (9) (10)-;- (11)15 (12)(1, e);e (13)②③ (14)n(n+3);2n 三、解答题(本大题共6小题,共80分) (15)(共13分) 解:(I) f ’(x)=-3x2+6x+9.令f ‘(x)<0,解得x<-1或x>3, 所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞). (II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a, 所以f(2)>f(-2).因为在(-1,3)上f ‘(x)>0,所以f(x)在[-1, 2]上单调递增,又由于f(x)在[-2,-1]上单调递减,因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有 22+a=20,解得 a=-2. 故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7, 即函数f(x)在区间[-2,2]上的最小值为-7. (16)(共14分) (I)在直四棱柱ABCD-AB1C1D1中, ∵AA1⊥底面ABCD.∴ AC是A1C在平面ABCD上的射影. ∵BD⊥AC.∴ BD⊥A1C; (II)连结A1E,C1E,A1 C1. 与(I)同理可证BD⊥A1E,BD⊥C1E, ∴ ∠A1EC1为二面角A1-BD-C1的平面角. ∵ AD⊥DC,∴ ∠A1D1C1=∠ADC=90°, 又A1D1=AD=2,D1C1= DC=2,AA1=且 AC⊥BD, ∴ A1C1=4,AE=1,EC=3,∴ A1E=2,C1E=2, 在△A1EC1中,A1C12=A1E2+C1E2, ∴ ∠A1EC1=90°, 即二面角A1-BD-C1的大小为90°. (III)过B作 BF//AD交 AC于 F,连结FC1, 则∠C1BF就是AD与BC1所成的角. ∵ AB=AD=2, BD⊥AC,AE=1, ∴ BF=2,EF=1,FC=2,BC=DC,∴ FC1=,BC1=, 在△BFC1 中,,∴ ∠C1BF= 即异面直线AD与BC1所成角的大小为. (17)(共13分) 解:(I)P(ξ=0)=,P(ξ=1)=,P(ξ=2)=, ξ 0 1 2 3 P P(ξ=3)=, ξ的概率分布如下表: Eξ=, (或Eξ=3·=1.5); (II)乙至多击中目标2次的概率为1-=; (III)设甲恰比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件B1,甲恰击中目标 3次且乙恰击中目标 1次为事件B2,则A=B1+B2, B1,B2为互斥事件. 所以,甲恰好比乙多击中目标2次的概率为. (18)(共14分) 解:(I)W1={(x, y)| kx<y<-kx, x<0},W2={(x, y)| -kx<y<kx, x>0}, (II)直线l1:kx-y=0,直线l2:kx+y=0,由题意得 , 即, 由P(x, y)∈W,知k2x2-y2>0, 所以 ,即, 所以动点P的轨迹C的方程为; (III)当直线l与x轴垂直时,可设直线l的方程为x=a(a≠0).由于直线l,曲线C关于x轴对称,且l1与l2关于x轴对称,于是M1M2,M3M4的中点坐标都为(a,0),所以△OM1M2,△OM3M4的重心坐标都为(a,0),即它们的重心重合, 当直线l1与x轴不垂直时,设直线l的方程为y=mx+n(n≠0). 由,得 由直线l与曲线C有两个不同交点,可知k2-m2≠0且 △=>0 设M1,M2的坐标分别为(x1, y1),(x2, y2), 则, , 设M3,M4的坐标分别为(x3, y3),(x4, y4), 由得 从而, 所以y3+y4=m(x3+x4)+2n=m(x1+x2)+2n=y1+y2, 于是△OM1M2的重心与△OM3M4的重心也重合. (19)(共12分) 解:(I)a2=a1+=a+,a3=a2=a+; (II)∵ a4=a3+=a+, 所以a5=a4=a+, 所以b1=a1-=a-, b2=a3-=(a-), b3=a5-=(a-), 猜想:{bn}是公比为的等比数列· 证明如下: 因为bn+1=a2n+1-=a2n-=(a2n-1-)=bn, (n∈N*) 所以{bn}是首项为a-, 公比为的等比数列· (III). (20)(共14分) (I)证明:设x*为f(x) 的峰点,则由单峰函数定义可知,f(x)在[0, x*]上单调递增,在[x*, 1]上单调递减. 当f(x1)≥f(x2)时,假设x*(0, x2),则x1<x2<x*,从而f(x*)≥f(x2)>f(x1), 这与f(x1)≥f(x2)矛盾,所以x*∈(0, x2),即(0, x2)是含峰区间. 当f(x1)≤f(x2)时,假设x*( x2, 1),则x*<≤x1<x2,从而f(x*)≥f(x1)>f(x2), 这与f(x1)≤f(x2)矛盾,所以x*∈(x1, 1),即(x1, 1)是含峰区间. (II)证明:由(I)的结论可知: 当f(x1)≥f(x2)时,含峰区间的长度为l1=x2; 当f(x1)≤f(x2)时,含峰区间的长度为l2=1-x1; 对于上述两种情况,由题意得 ① 由①得 1+x2-x1≤1+2r,即x1-x1≤2r. 又因为x2-x1≥2r,所以x2-x1=2r, ② 将②代入①得 x1≤0.5-r, x2≥0.5-r, ③ 由①和③解得 x1=0.5-r, x2=0.5+r. 所以这时含峰区间的长度l1=l1=0.5+r,即存在x1,x2使得所确定的含峰区间的长度不大于0.5+r. (III)解:对先选择的x1;x2,x1<x2,由(II)可知 x1+x2=l, ④ 在第一次确定的含峰区间为(0, x2)的情况下,x3的取值应满足 x3+x1=x2, ⑤ 由④与⑤可得, 当x1>x3时,含峰区间的长度为x1. 由条件x1-x3≥0.02,得x1-(1-2x1)≥0.02,从而x1≥0.34. 因此,为了将含峰区间的长度缩短到0.34,只要取 x1=0.34,x2=0.66,x3=0.32.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开