分享
2020届广东省广州市高三12月调研测试数学理试题.doc
下载文档

ID:2818593

大小:906.81KB

页数:18页

格式:DOC

时间:2024-01-04

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2020 广东省 广州市 12 调研 测试 学理 试题
免费资料公众号:学习界的007 2020届广州市高三年级调研测试 理科数学 2019.12 本试卷共5页,23小题,满分150分,考试用时120分钟。 注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B铅笔在答题卡的相应位置填涂考生号、并将试卷类型(A)填图在答题卡的相应位置上。 2. 作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须卸载答题卡各题目制定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔盒涂改液,不按以上要求作答无效。 4. 考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一.选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.如图1,已知全集U=Z,集合A={-2,-1,0,1,2},集合B={1,2,3,4},则图中阴影部分表示的集合是(  ) A.{3,4} B.{-2,-1,0} C.{1,2} D.{2,3,4} 2.已知Z=(i为虚数单位),在复平面内,复数Z对应的点在(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.已知,,,则a,b,c的大小关系为(  ) A. B. C. D. 4.已知实数满足,则的最小值为(  ) A.-7 B.-6 C.1 D.6 5.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m,,n,已知三个社团他都能进入的概率为,至少进入一个社团的概率为,且m>n.则(  ) A. B. C. D. 6.如图2,利用该算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为(  ) A.2 B.3 C.4 D.5 7. 已知F为双曲线的右焦点,过F做C的渐近线的垂线FD,垂足为D,且满足(O为坐标原点),则双曲线的离心力为(  ) A. B.2 C.3 D. 8.函数的大致图像是(  ) A. B. C. D. 9.如图3,在中,则(  ) A. B.3 C. D.-3 10.1772年德国的天文学家J.E.波得发现了求太阳的行星距离的法则。记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表: 星名 水星 金星 地球 火星 木星 土星 与太阳的距离 4 7 10 16 52 100 除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当是德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐用过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带。请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是 A.388 B.772 C.1540 D.3076 11.已知点A,B关于坐标原点O对称,,以M为圆心的圆过A,B两点,且与直线相切,若存在定点P,使得当A运动时,为定值,则点P的坐标为 A. B. C. D. 12.已知偶函数满足,且当时,,若关于x的不等式上有且只有300个整数解,则实数a的取值范围是 A. B. C. D. 二.填空题:本题共4小题,每小题5分,共20分。 13.已知,则__________. 14.若展开式的二项式系数之和是64,则展开式中的常数项的值是__________. 15.已知某三棱锥的侧棱长大雨底边长,其外接球体积为,三视图如图3所示,则其侧视图的面积为__________. 16.在△ABC中,设角A,B,C对应的边分别为,记△ABC的面积为S,且,则的最大值为__________. 三. 解答题:共70分。解答应些出文字说明证明过程或演算步骤。第13~21题为必考题,每个试题考生都必须作答。第22,23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17. (12分)已知为单调递增的等差数列,,,设数列满足,. (1) 求数列的通项;(2)求数列的前项和. 18.(12分)如图5,已知四边形ABCD是变成为2的菱形,∠ABC=60°,平面AEFC⊥平面ABCD, EF∥AC,AE=AB,AC=2EF. (1)求证:平面BED⊥平面AEFC; (2)若四边形AEFC为直角梯形,且EA⊥AC,求二面角B-FC-D的余弦值。 19.(12分)某城市A公司外卖配送员底薪是每月1800元/人,设每月每人配送的单数为X,若X∈[1,300],每单提成3元,若X∈(300,600),每单提成4元,若X∈(600,+∞),每单提成4.5元,B公司配送员底薪是每月2100元,设每月配送单数为Y,若Y∈[1,400],每单提成3元,若Y∈(400,+∞),每单提成4元,小想在A公司和B公司之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2019年4月份(30天)的送餐量数据,如下表: 表1:A公司配送员甲送餐量统计 日送餐量x(单) 13 14 16 17 18 20 天数 2 6 12 6 2 2 表2:B公司配送员乙送餐量统计 日送餐量x(单) 11 13 14 15 16 18 天数 4 5 12 3 5 1 (1)设A公司配送员月工资为f(X),B公司配送员月工资为g(Y),当X=Y且X,Y∈[300,600]时,比较f(X)与g(Y)的大小关系 (2)将甲乙9月份的日送餐量的频率视为对应公司日送餐量的概率 (i)计算外卖配送员甲和乙每日送餐量的数学期望E(X)和E(Y) (ii)请利用所学的统计学知识为小王作出选择,并说明理由. 20.(12分)已知椭圆的右焦点F到左顶点的距离为3. (1) 求椭圆C的方程; (2) 设O是坐标原点,过点F的直线与椭圆C交于A,B两点(A,B不在x轴上),若,延长AO交椭圆与点G,求四边形AGBE的面积S的最大值. 21.(12分)已知函数 (1)讨论函数的单调性; (2)若函数有两个极值点,证明: (二).选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分。 22.(10分)【选修4—4:坐标系与参数方程】在直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为 (1)求曲线C和直线的直角坐标系方程; (2)已知直线与曲线C相交于A,B两点,求的值 23. 【选修4—5:不等式选讲】(10分) 已知 (1)当时,求不等式 的解集; (2)若时,,求的取值范围. 参考答案 一.选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.如图1,已知全集U=Z,集合A={-2,-1,0,1,2},集合B={1,2,3,4},则图中阴影部分表示的集合是(  ) A.{3,4} B.{-2,-1,0} C.{1,2} D.{2,3,4} 答案:A 2.已知Z=(i为虚数单位),在复平面内,复数Z对应的点在(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:C 3.已知,,,则a,b,c的大小关系为(  ) A. B. C. D. 答案:D 4.已知实数满足,则的最小值为(  ) A.-7 B.-6 C.1 D.6 答案:A 5.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m,,n,已知三个社团他都能进入的概率为,至少进入一个社团的概率为,且m>n.则(  ) A. B. C. D. 答案:A 6.如图2,利用该算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为(  ) A.2 B.3 C.4 D.5 答案:B 7、已知F为双曲线的右焦点,过F做C的渐近线的垂线FD,垂足为D,且满足(O为坐标原点),则双曲线的离心力为(  ) A. B.2 C.3 D. 答案:A 8.函数的大致图像是(  ) A. B. C. D. 答案:D 9.如图3,在中,则(  ) A. B.3 C. D.-3 答案:A 10.1772年德国的天文学家J.E.波得发现了求太阳的行星距离的法则。记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表: 星名 水星 金星 地球 火星 木星 土星 与太阳的距离 4 7 10 16 52 100 除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当是德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐用过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带。请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是 A.388 B.772 C.1540 D.3076 答案:B 11.已知点A,B关于坐标原点O对称,,以M为圆心的圆过A,B两点,且与直线相切,若存在定点P,使得当A运动时,为定值,则点P的坐标为 A. B. C. D. 答案:C 12.已知偶函数满足,且当时,,若关于x的不等式上有且只有300个整数解,则实数a的取值范围是 A. B. C. D. 答案:D 二.填空题:本题共4小题,每小题5分,共20分。 13.已知,则__________. 答案: 14.若展开式的二项式系数之和是64,则展开式中的常数项的值是__________. 答案:135 15.已知某三棱锥的侧棱长大雨底边长,其外接球体积为,三视图如图3所示,则其侧视图的面积为__________. 答案:6 16.在△ABC中,设角A,B,C对应的边分别为,记△ABC的面积为S,且,则的最大值为__________. 答案: 17.(12分)已知为单调递增的等差数列,,,设数列满足,. (2) 求数列的通项;(2)求数列的前项和. 解:(1),又 数列是递增的,解得: 所以,公差=2,首项=4,所以, (2) ①  n≥2 ② ①-②得:,n≥2, n=1时,=6也满足上式, 所以,, 数列是以6为首项,2为公式的等比数列, 18.(12分)如图5,已知四边形ABCD是边长为2的菱形,∠ABC=60°,平面AEFC⊥平面ABCD, EF∥AC,AE=AB,AC=2EF. (1)求证:平面BED⊥平面AEFC; (2)若四边形AEFC为直角梯形,且EA⊥AC,求二面角B-FC-D的余弦值。 解:(1)平面AEFC⊥平面ABCD,平面AEFC∩平面ABCD=AC, 菱形ABCD中,BD⊥AC, 所以,BD⊥平面AEFC, 又BD平面BED,所以,平面BED⊥平面AEFC (2)平面AEFC⊥平面ABCD,平面AEFC∩平面ABCD=AC, EA⊥AC,所以,EA⊥平面ABCD, 直角梯形中,AC=2EF,设AC交BD于O,连结FO,则有AO=EF,AO∥EF, 所以,AOFE为平行四边形,所以OF∥EA, 所以,FO⊥平面ABCD, 菱形ABCD中,∠ABC=60°,所以,三角形ABC为等边三角形, 设OC=1,则OF=AE=AB=2,OB=OD=, B(,0,0),C(0,1,0),F(0,0,2),D(-,0,0), =(-,1,0),=(-,0,2), 设平面BCF的法向量为, 则,令,可得:=(2,2,), 同理可求得平面DCF的法向量=(2,-2,-), 求得二面角B-FC-D的余弦值为- 11第 页 19.(12分)某城市A公司外卖配送员底薪是每月1800元/人,设每月每人配送的单数为X,若X∈[1,300],每单提成3元,若X∈(300,600),每单提成4元,若X∈(600,+∞),每单提成4.5元,B公司配送员底薪是每月2100元,设每月配送单数为Y,若Y∈[1,400],每单提成3元,若Y∈(400,+∞),每单提成4元,小想在A公司和B公司之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2019年4月份(30天)的送餐量数据,如下表: 表1:A公司配送员甲送餐量统计 日送餐量x(单) 13 14 16 17 18 20 天数 2 6 12 6 2 2 表2:B公司配送员乙送餐量统计 日送餐量x(单) 11 13 14 15 16 18 天数 4 5 12 3 5 1 (1)设A公司配送员月工资为f(X),B公司配送员月工资为g(Y),当X=Y且X,Y∈[300,600]时,比较f(X)与g(Y)的大小关系 (2)将甲乙9月份的日送餐量的频率视为对应公司日送餐量的概率 (i)计算外卖配送员甲和乙每日送餐量的数学期望E(X)和E(Y) (ii)请利用所学的统计学知识为小王作出选择,并说明理由. 解:(1) X=Y且X,Y∈[300,600], 所以,g(Y)=g(X), 当X∈(300,400]时, f(X)-g(Y)=f(X)-g(X)=(1800+4X)-(2100+3X)=X-300>0, 当X∈(400,600]时, f(X)-g(Y)=f(X)-g(X)=(1800+4X)-(2100+4X)=-300<0, 当X∈(300,400]时,f(X)>g(Y) 当X∈(400,600]时,f(X)<g(Y) (2)(i)送餐量X的分布列为: X 13 14 16 17 18 20 P 送餐量Y的分布列为: Y 11 13 14 15 16 18 P 则E(X)=16,E(Y)=14 20.(12分)已知椭圆的右焦点F到左顶点的距离为3. (3) 求椭圆C的方程; (4) 设O是坐标原点,过点F的直线与椭圆C交于A,B两点(A,B不在x轴上),若,延长AO交椭圆与点G,求四边形AGBE的面积S的最大值. 解: 如图,SAGBE=3S△AOB=3××|OF|×|y1-y2|=      = 令, 则SAGBE==,在[1,+∞)上单调递减, 所以,当t=1时,SAGBE有最大值为 21.(12分)已知函数 (1)讨论函数的单调性; (2)若函数有两个极值点,证明: 解:(1)定义域为(0,+∞), , 令,令,得, ①若△≤0,则,此时,恒成立; ② (二).选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分。 22.(10分)【选修4—4:坐标系与参数方程】在直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为 (1)求曲线C和直线的直角坐标系方程; (2)已知直线与曲线C相交于A,B两点,求的值 解: 24. 【选修4—5:不等式选讲】(10分) 已知 (1)当时,求不等式 的解集; (2)若时,,求的取值范围. 解: - 18 -

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开